Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 145(21): 211703, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-28799394

RESUMEN

Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.

2.
J Chem Phys ; 132(13): 131102, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20387914

RESUMEN

In titration experiments with NaOH, we have determined the full phase diagram of charged colloidal spheres in dependence on the particle density n, the particle effective charge Z(eff) and the concentration of screening electrolyte c using microscopy, light and ultrasmall angle x-ray scattering (USAXS). For sufficiently large n, the system crystallizes upon increasing Z(eff) at constant c and melts upon increasing c at only slightly altered Z(eff). In contrast to earlier work, equilibrium phase boundaries are consistent with a universal melting line prediction from computer simulation, if the elasticity effective charge is used. This charge accounts for both counterion condensation and many-body effects.

3.
J Phys Condens Matter ; 22(15): 153101, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21389545

RESUMEN

Metallic systems are widely used as materials in daily human life. Their properties depend very much on the production route. In order to improve the production process and even develop novel materials a detailed knowledge of all physical processes involved in crystallization is mandatory. Atomic systems like metals are characterized by very high relaxation rates, which make direct investigations of crystallization very difficult and in some cases impossible. In contrast, phase transitions in colloidal systems are very sluggish and colloidal suspensions are optically transparent. Therefore, colloidal systems are often discussed as model systems for metals. In the present work, we study the process of crystallization of charged colloidal systems from the very beginning. Charged colloids offer the advantage that the interaction potential can be systematically tuned by a variation of the particle number density and the salt concentration. We use light scattering and ultra-small angle x-ray scattering to investigate the formation of short-range order in the liquid state even far from equilibrium, crystal nucleation and crystal growth. The results are compared with those of equivalent studies on metallic systems. They are critically assessed as regards similarities and differences.


Asunto(s)
Coloides/química , Física/métodos , Cristalización , Iones , Ensayo de Materiales , Metales/química , Modelos Estadísticos , Dispersión de Radiación , Propiedades de Superficie , Suspensiones , Agua/química , Rayos X
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 010501, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19256992

RESUMEN

Charged colloidal particles interact via a hard core Yukawa potential, while isotropic Lennard-Jones-like potentials are frequently used as pair potentials in metals. We present measurements of the structure factor of shear molten monodisperse colloids and molten metals using ultrasmall-angle x-ray scattering and elastic neutron scattering, respectively. In both systems data analysis gives evidence of fivefold-symmetric short-range order becoming more pronounced with increasing deviations from equilibrium. The experiments demonstrate that in both systems topological effects control ordering in the melt state.

5.
J Phys Condens Matter ; 21(46): 464115, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21715879

RESUMEN

We studied the competition between heterogeneous and homogeneous nucleation of an aqueous suspension of charged colloidal spheres close to the container walls. Samples of equilibrium crystalline structure were shear-melted and the metastable melt left to solidify after the cessation of shear. The crystallization kinetics was monitored using time-resolved scattering techniques: at low particle number densities n we applied an improved static light scattering method while at large particle concentrations ultra-small-angle x-ray scattering was applied for the first time. Our results show some unexpected behavior: the heterogeneous nucleation at the container walls is delayed in comparison to the homogeneous bulk nucleation and its rate density appears surprisingly slightly smaller, demonstrating the complexity of the observed crystallization process.

6.
J Phys Condens Matter ; 21(46): 464116, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21715880

RESUMEN

We review recent work on the phase behaviour of binary charged sphere mixtures as a function of particle concentration and composition. Both size ratios Γ and charge ratios Λ are varied over a wide range. Unlike the case for hard spheres, the long-ranged Coulomb interaction stabilizes the crystal phase at low particle concentrations and shifts the occurrence of amorphous solids to particle concentrations considerably larger than the freezing concentration. Depending on Γ and Λ, we observe upper azeotrope, spindle, lower azeotrope and eutectic types of phase diagrams, all known well from metal systems. Most solids are of body centred cubic structure. Occasionally stoichiometric compounds are formed at large particle concentrations. For very low Γ, entropic effects dominate and induce a fluid-fluid phase separation. Since for charged spheres the charge ratio Λ is also decisive for the type of phase diagram, future experiments with charge variable silica spheres are suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA