Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 40(1): 161, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964942

RESUMEN

BACKGROUND: Improvement of radiotherapy efficacy requires better insight in the dynamic responses that occur during irradiation. Here, we aimed to identify the molecular responses that are triggered during clinically applied fractionated irradiation. METHODS: Gene expression analysis was performed by RNAseq or microarray analysis of cancer cells or xenograft tumors, respectively, subjected to 3-5 weeks of 5 × 2 Gy/week. Validation of altered gene expression was performed by qPCR and/or ELISA in multiple cancer cell lines as well as in pre- and on-treatment biopsies from esophageal cancer patients ( NCT02072720 ). Targeted protein inhibition and CRISPR/Cas-induced gene knockout was used to analyze the role of type I interferons and cGAS/STING signaling pathway in the molecular and cellular response to fractionated irradiation. RESULTS: Gene expression analysis identified type I interferon signaling as the most significantly enriched biological process induced during fractionated irradiation. The commonality of this response was confirmed in all irradiated cell lines, the xenograft tumors and in biopsies from esophageal cancer patients. Time-course analyses demonstrated a peak in interferon-stimulated gene (ISG) expression within 2-3 weeks of treatment. The response was accompanied by a variable induction of predominantly interferon-beta and/or -lambda, but blocking these interferons did not affect ISG expression induction. The same was true for targeted inhibition of the upstream regulatory STING protein while knockout of STING expression only delayed the ISG expression induction. CONCLUSIONS: Collectively, the presented data show that clinically applied fractionated low-dose irradiation can induce a delayed type I interferon response that occurs independently of interferon expression or STING signaling. These findings have implications for current efforts that aim to target the type I interferon response for cancer treatment.


Asunto(s)
Neoplasias Esofágicas/radioterapia , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Animales , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/radioterapia , Fraccionamiento de la Dosis de Radiación , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/metabolismo , Femenino , Células HT29 , Humanos , Inmunidad/efectos de la radiación , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Angiogenesis ; 23(3): 493-513, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506201

RESUMEN

Angiogenesis, the formation of new blood vessels by endothelial cells, is a finely tuned process relying on the balance between promoting and repressing signalling pathways. Among these, Notch signalling is critical in ensuring appropriate response of endothelial cells to pro-angiogenic stimuli. However, the downstream targets and pathways effected by Delta-like 4 (DLL4)/Notch signalling and their subsequent contribution to angiogenesis are not fully understood. We found that the Rho GTPase, RHOQ, is induced by DLL4 signalling and that silencing RHOQ results in abnormal sprouting and blood vessel formation both in vitro and in vivo. Loss of RHOQ greatly decreased the level of Notch signalling, conversely overexpression of RHOQ promoted Notch signalling. We describe a new feed-forward mechanism regulating DLL4/Notch signalling, whereby RHOQ is induced by DLL4/Notch and is essential for the NICD nuclear translocation. In the absence of RHOQ, Notch1 becomes targeted for degradation in the autophagy pathway and NICD is sequestered from the nucleus and targeted for degradation in lysosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Humanos , Dominios Proteicos , Receptores Notch/genética , Proteínas de Unión al GTP rho/genética
3.
Oncotarget ; 7(47): 76613-76627, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27780936

RESUMEN

The extent of tumor oxygenation is an important factor contributing to the efficacy of radiation therapy (RTx). Interestingly, several preclinical studies have shown benefit of combining RTx with drugs that inhibit tumor blood vessel growth, i.e. angiostatic therapy. Recent findings show that proper scheduling of both treatment modalities allows dose reduction of angiostatic drugs without affecting therapeutic efficacy. We found that whilst low dose sunitinib (20 mg/kg/day) did not affect the growth of xenograft HT29 colon carcinoma tumors in nude mice, the combination with either single dose RTx (1x 5Gy) or fractionated RTx (5x 2Gy/week, up to 3 weeks) substantially hampered tumor growth compared to either RTx treatment alone. To better understand the interaction between RTx and low dose angiostatic therapy, we explored the effects of RTx on tumor angiogenesis and tissue perfusion. DCE-MRI analyses revealed that fractionated RTx resulted in enhanced perfusion after two weeks of treatment. This mainly occurred in the center of the tumor and was accompanied by increased tissue viability and decreased hypoxia. These effects were accompanied by increased expression of the pro-angiogenic growth factors VEGF and PlGF. DCE-MRI and contrast enhanced ultrasonography showed that the increase in perfusion and tissue viability was counteracted by low-dose sunitinib. Overall, these data give insight in the dynamics of tumor perfusion during conventional 2 Gy fractionated RTx and provide a rationale to combine low dose angiostatic drugs with RTx both in the palliative as well as in the curative setting.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias/patología , Neovascularización Patológica , Radioterapia , Animales , Línea Celular Tumoral , Quimioradioterapia , Terapia Combinada , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Hipoxia/radioterapia , Imagen por Resonancia Magnética/métodos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/radioterapia , Radioterapia/métodos , Ultrasonografía/métodos
4.
Oncotarget ; 7(8): 9353-67, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26814432

RESUMEN

Cancer-associated fibroblasts (CAFs) play a key role in promoting tumor growth, acting through complex paracrine regulation. GTP cyclohydrolase (GTPCH) expression for tetrahydrobiopterin synthesis in tumor stroma is implicated in angiogenesis and tumor development. However, the clinical significance of GTPCH expression in breast cancer is still elusive and how GTPCH regulates stromal fibroblast and tumor cell communication remains unknown. We found that GTPCH was upregulated in breast CAFs and epithelia, and high GTPCH RNA was significantly correlated with larger high grade tumors and worse prognosis. In cocultures, GTPCH expressing fibroblasts stimulated breast cancer cell proliferation and motility, cancer cell Tie2 phosphorylation and consequent downstream pathway activation. GTPCH interacted with Ang-1 in stromal fibroblasts and enhanced Ang-1 expression and function, which in turn phosphorylated tumor Tie2 and induced cell proliferation. In coimplantation xenografts, GTPCH in fibroblasts enhanced tumor growth, upregulating Ang-1 and alpha-smooth muscle actin mainly in fibroblast-like cells. GTPCH inhibition resulted in the attenuation of tumor growth and angiogenesis. GTPCH/Ang-1 interaction in stromal fibroblasts and activation of Tie2 on breast tumor cells could play an important role in supporting breast cancer growth. GTPCH may be an important mechanism of paracrine tumor growth and hence a target for therapy in breast cancer.


Asunto(s)
Angiopoyetina 1/metabolismo , Neoplasias de la Mama/patología , GTP Ciclohidrolasa/metabolismo , Receptor TIE-2/metabolismo , Células 3T3 , Angiopoyetina 1/genética , Animales , Biopterinas/análogos & derivados , Biopterinas/biosíntesis , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Activación Enzimática , Células Epiteliales/metabolismo , Femenino , GTP Ciclohidrolasa/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Fosforilación , ARN Mensajero/genética , Células del Estroma/metabolismo , Análisis de Matrices Tisulares , Trasplante Heterólogo
5.
Angiogenesis ; 18(4): 385-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202788

RESUMEN

To improve the efficacy of radiotherapy (RTx), there is a growing interest in combining RTx with drugs that inhibit angiogenesis, i.e., the process of neo-vessel formation out of preexisting capillaries. A frequently used drug to inhibit angiogenesis is sunitinib (Sutent, SU11248), a receptor tyrosine kinase inhibitor that is currently FDA approved for the treatment of several cancer types. The current review presents an overview of the preclinical studies and clinical trials that combined sunitinib with RTx. We discuss the findings from preclinical and clinical observations with a focus on dose scheduling and commonly reported toxicities. In addition, the effects of combination therapy on tumor response and patient survival are described. Finally, the lessons learned from preclinical and clinical studies are summarized and opportunities and pitfalls for future clinical trials are presented.


Asunto(s)
Quimioradioterapia/métodos , Indoles/uso terapéutico , Neoplasias/terapia , Neovascularización Patológica/terapia , Pirroles/uso terapéutico , Animales , Humanos , Neoplasias/irrigación sanguínea , Sunitinib
6.
Cancer Med ; 4(7): 1003-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25828633

RESUMEN

The combination of radiotherapy with sunitinib is clinically hampered by rare but severe side effects and varying results with respect to clinical benefit. We studied different scheduling regimes and dose reduction in sunitinib and radiotherapy in preclinical tumor models to improve potential outcome of this combination treatment strategy. The chicken chorioallantoic membrane (CAM) was used as an angiogenesis in vivo model and as a xenograft model with human tumor cells (HT29 colorectal adenocarcinoma, OE19 esophageal adenocarcinoma). Treatment consisted of ionizing radiation (IR) and sunitinib as single therapy or in combination, using different dose-scheduling regimes. Sunitinib potentiated the inhibitory effect of IR (4 Gy) on angiogenesis. In addition, IR (4 Gy) and sunitinib (4 days of 32.5 mg/kg per day) inhibited tumor growth. Ionizing radiation induced tumor cell apoptosis and reduced proliferation, whereas sunitinib decreased tumor angiogenesis and reduced tumor cell proliferation. When IR was applied before sunitinib, this almost completely inhibited tumor growth, whereas concurrent IR was less effective and IR after sunitinib had no additional effect on tumor growth. Moreover, optimal scheduling allowed a 50% dose reduction in sunitinib while maintaining comparable antitumor effects. This study shows that the therapeutic efficacy of combination therapy improves when proper dose-scheduling is applied. More importantly, optimal treatment regimes permit dose reductions in the angiogenesis inhibitor, which will likely reduce the side effects of combination therapy in the clinical setting. Our study provides important leads to optimize combination treatment in the clinical setting.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Indoles/farmacología , Pirroles/farmacología , Radiación Ionizante , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Modelos Animales de Enfermedad , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/radioterapia , Dosis de Radiación , Sunitinib , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Methods Mol Biol ; 1207: 285-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25253147

RESUMEN

The growth of new blood vessels is a key event in many (patho)physiological processes, including embryogenesis, wound healing, inflammatory diseases, and cancer. Neovascularization requires different, well-coordinated actions of endothelial cells, i.e., the cells lining the luminal side of all blood vessels. Galectins are involved in several of these activities. In this chapter we describe methods to study galectins and galectin inhibition in three key functions of endothelial cells during angiogenesis, i.e., endothelial cell migration, endothelial cell sprouting, and endothelial cell network formation.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Galectinas/antagonistas & inhibidores , Galectinas/metabolismo , Línea Celular , Movimiento Celular , Proliferación Celular , Humanos
8.
Methods Mol Biol ; 1207: 305-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25253149

RESUMEN

Angiogenesis is a complex multi-process involving various activities of endothelial cells. These activities are influenced in vivo by environmental conditions like interactions with other cell types and the microenvironment. Galectins play a role in several of these interactions and are therefore required for proper execution of in vivo angiogenesis. In this chapter we describe a method to study galectins and galectin inhibitors during physiologic and pathophysiologic angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay.


Asunto(s)
Pollos , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Galectinas/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Membrana Corioalantoides/citología , Células Endoteliales , Galectinas/antagonistas & inhibidores , Galectinas/química , Solubilidad
9.
Drug Resist Updat ; 15(3): 173-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22561672

RESUMEN

A large number of patients that undergo radiotherapy develop local failure. To improve the efficacy of treatment, there is an increasing interest in combining radiotherapy with novel targeted therapies. Inhibiting the growth of new tumor blood vessels, i.e. tumor angiogenesis, is such a targeted therapy. Growing tumors induce angiogenesis to ensure an adequate delivery of oxygen and nutrients and several angiostatic drugs have been approved for the treatment of cancer patients. Both pre-clinical and clinical studies have shown that radiotherapy can influence tumor angiogenesis and that angiogenesis inhibition can potentiate the effect of radiotherapy. Therefore, the combination of angiogenesis inhibition and radiotherapy holds a promising future in cancer treatment. However, the radiosensitizing effects of angiogenesis inhibition are transient and recent findings indicate that the effects of irradiation on angiogenesis depend on the dose and treatment schedule. This raises questions regarding the scheduling of both treatment modalities in order to achieve the optimal treatment efficacy with minimal toxicity. In this review the opportunities and pitfalls of combining angiostatic agents with radiotherapy are discussed. The lessons learned from (pre)clinical studies are summarized with an emphasis on scheduling and dosing of the combination therapy. Finally, the opportunities of ongoing clinical studies are discussed and opportunities to improve the combination of angiostatic drugs with radiotherapy are presented.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/irrigación sanguínea , Neoplasias/terapia , Animales , Ensayos Clínicos como Asunto , Terapia Combinada/métodos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...