Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(1): e0309322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36598194

RESUMEN

Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.


Asunto(s)
Neisseria gonorrhoeae , ARN Pequeño no Traducido , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Hermanos , Bacterias/genética , Redes y Vías Metabólicas/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Nucleótidos/metabolismo , Aminoácidos/metabolismo , Vitaminas , Regulación Bacteriana de la Expresión Génica
2.
Microbiology (Reading) ; 167(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34515630

RESUMEN

Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae, TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.


Asunto(s)
Neisseria gonorrhoeae , ARN Pequeño no Traducido , Regulación Bacteriana de la Expresión Génica , Humanos , Neisseria gonorrhoeae/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN , Hermanos
3.
mBio ; 11(4)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843554

RESUMEN

Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.IMPORTANCEStaphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites.


Asunto(s)
Bacteriemia/microbiología , Proteínas Bacterianas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia , Factores de Virulencia
4.
J Bacteriol ; 200(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30150231

RESUMEN

Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.


Asunto(s)
Toxinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/genética , ARN Largo no Codificante/genética , Staphylococcus aureus/genética , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Sci Rep ; 7(1): 512, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28360414

RESUMEN

Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are two different species of betaherpesviruses that integrate into sub-telomeric ends of human chromosomes, for which different prevalence rates of integration have been reported. It has been demonstrated that integrated viral genome is stable and is fully retained. However, study of chromosomally integrated viral genome in individuals carrying inherited HHV-6 (iciHHV-6) showed unexpected number of viral DR copies. Hence, we created an in vitro infection model and studied retention of full or partial viral genome over a period of time. We observed an exceptional event where cells retained viral direct repeats (DRs) alone in the absence of the full viral genome. Finally, we found evidence for non-telomeric integration of HHV-6A DR in both cultured cells and in an iciHHV-6 individual. Our results shed light on several novel features of HHV-6A chromosomal integration and provide valuable information for future screening techniques.


Asunto(s)
Cromosomas Humanos/virología , Herpesvirus Humano 6/genética , Infecciones por Roseolovirus/virología , Integración Viral/genética , Secuencia de Bases , Línea Celular Tumoral , Genoma Viral , Humanos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...