Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(34): 12099-12109, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37587409

RESUMEN

We report the morphology and microstructure of n-dialkyl side-chain-substituted thiophene DPP end-capped with phenyl groups (Ph-TDPP-Ph) thin films and compare the influence of deposition method and substrate surface using thermally oxidized Si and graphene substrates as well as monolayer graphene surfaces with an underlying self-assembled octadecyltrichlorosilane monolayer, complemented by an aging study of spin-coated films over a 2 weeks aging period. A distinct difference in morphology was observed between spin-coated and vacuum-deposited thin films, which formed a fiber-like morphology and a continuous layer of terraced grains, respectively. After an initial film evolution, all combinations of deposition method and substrate type result in well-ordered thin films with almost identical crystalline phases with slight variations in crystallinity and mosaicity. These findings point toward strong intermolecular forces dominating during growth, and the templating effect observed for other oligomer films formed on graphene is consequently ineffective for this material type. Upon aging of spin-coated films, a noticeable evolution involving two different morphologies and crystalline phases were observed. After several days, the thin film evolved into a more stable crystal phase and a fiber-like morphology. Moreover, slight variation in optical spectra were elucidated on the basis on density functional theory calculations. These results demonstrate that thin-film properties of DPP derivatives can be tailored by manipulating the film formation process.

2.
Langmuir ; 38(39): 11845-11859, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36121768

RESUMEN

We report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[(N(1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl-alt-1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates. Special attention is given to the system with the anionic surfactant, sodium dodecyl sulfate (SDS). The combination of photophysical techniques with electrical conductivity, NMR (1H, 13C, and 27Na), DFT calculations, molecular dynamics simulations, and small-angle neutron scattering (SANS) provides a detailed picture on the behavior of the SDS/BG2 system in aqueous solution and in thin films. NMR, electric conductivity, and DFT results suggest that hydrophilic interactions occur between the polar headgroup of the surfactant (OSO3- Na+) and the aza-[18]-crown-6 moiety. DFT calculations confirmed the capability of BG2 to form stable complexes with the Na+ cations, where the cation can be either inside the azacrown cavity or sandwiched between the cavity and the polymer chain, which seem to determine the position of the surfactant hydrocarbon chain and, therefore, be responsible for the disruption of the BG2 aggregates and subsequent increase in the photoluminescence quantum yields. SANS measurements, made with hydrogenated and deuterated SDS in D2O, clearly show how micron-sized aggregates of BG2 are broken down by SDS and then how BG2 becomes preferentially incorporated within joint colloidal particles of BG2 and SDS with increasing [SDS]/[BG2] molar ratio.

3.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809075

RESUMEN

A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12-1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60-80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0-90%), and their λem peaks were blue shifted.

4.
Molecules ; 25(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228058

RESUMEN

We present a small-angle X-ray scattering (SAXS) study of the anisotropic photoinduced growth of silver (Ag) nanoprisms in aqueous dispersions. The growth of nearly spherical (<10 nm) Ag particles into large (>40 nm) and thin (<10 nm) triangular nanoprisms induced by 550 nm laser is followed in terms of particle size using indirect and direct methods for irradiation times up to 150 min. During the process, the surface-to-volume ratio of the particles decreased. The SAXS data of the initial solution fit well to the model of polydisperse spheres with pronounced average diameters around 7.4 nm and 10 nm. The data after 45 min irradiation fit well to the model containing approximately the same amount of the initial particles and the end product, the nanoprisms.


Asunto(s)
Luz , Nanoestructuras/química , Plata/química , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
Langmuir ; 36(9): 2300-2306, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32068398

RESUMEN

We report on small-angle neutron scattering (SANS) investigations of separate phase domains in high fat (70%) oil-in-water emulsions emulsified with the combination of sodium caseinate (CAS) and phosphatidylcholine (PC). The emulsion as a whole was studied by contrast variation to identify scattering components dominated by individual emulsifiers. The emulsion was subsequently separated into the aqueous phase and the oil-rich droplet phase, which were characterized separately. Emulsions produced with 1.05% (w/w) CAS and PC fraction which varies between 1.75% (w/w) and 0.35% (w/w) provided droplets between 10 and 19 µm in surface weighted mean in 70% fish oil-in-water emulsions. At least two-third of the overall CAS is associated with the interface, while the rest remains with the aqueous phase. Six percent of PC formed a monolayer in the interface, while the rest of the PC remains in the droplet phase in the form of multilayers. When the separated components were resuspended, the resuspended emulsion showed similar characteristics compared to the original emulsion in terms of droplet size distribution and neutron scattering. Instead, CAS in the aqueous phase separated from the emulsion shows aggregation not present in the corresponding CAS-in-D2O system.

6.
Langmuir ; 36(8): 1898-1906, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027509

RESUMEN

We report on the microstructure, morphology, and growth of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) thin films deposited on graphene, characterized by grazing incidence X-ray diffraction (GIXRD) and complemented by atomic force microscopy (AFM) measurements. NaT2 is deposited on two types of graphene surfaces: custom-made samples where chemical vapor deposition (CVD)-grown graphene layers are transferred onto a Si/SiO2 substrate by us and common commercially transferred CVD graphene on Si/SiO2. Pristine Si/SiO2 substrates are used as a reference. The NaT2 crystal structure and orientation depend strongly on the underlying surface, with the molecules predominantly lying down on the graphene surface (face-on orientation) and standing nearly out-of-plane (edge-on orientation) on the Si/SiO2 reference surface. Post growth GIXRD and AFM measurements reveal that the crystalline structure and grain morphology differ depending on whether there is polymer residue left on the graphene surface. In situ GIXRD measurements show that the thickness dependence of the intensity of the (111) reflection from the crystalline edge-on phase does not intersect zero at the beginning of the deposition process, suggesting that an initial wetting layer, corresponding to 1-2 molecular layers, is formed at the surface-film interface. By contrast, the (111) reflection intensity from the crystalline face-on phase grows at a constant rate as a function of film thickness during the entire deposition.

7.
J Colloid Interface Sci ; 554: 183-190, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31299546

RESUMEN

We report on the structural evaluation of high fat fish oil-in-water emulsions emulsified with sodium caseinate (CAS) and phosphatidylcholine (PC). The microemulsions contained 70% (w/w) fish oil with 1.05-1.4% (w/w) CAS and 0.4-1.75% (w/w) PC and were studied by the combination of light scattering together with small-angle X-ray and neutron scattering (SAXS/SANS). Aqueous CAS forms aggregates having a denser core of about 100 kDa and less dense shell about 400 kDa with the hard sphere diameter of 20.4 nm. PC appears as multilayers whose coherence length spans from 40 to 100 nm. PC monolayer separates oil and water phases. Moreover, 80% CAS particles are loosely bound to the interface but are not forming continuous coverage. The distance between aggregated CAS particles in microemulsion is increased compared to CAS aggregates in pure CAS-in-water system. PC multilayers become larger in the presence of oil-water interface compared to the pure PC mixtures. Bilayers become larger with increasing PC concentration. This study forms a structural base for the combination of CAS and PC emulsifiers forming a well-defined thin and dense PC layer together with thick but less dense CAS layer, which is assumed to explain its better oxidative stability compared to single emulsifiers.


Asunto(s)
Caseínas/química , Emulsiones/química , Aceites de Pescado/química , Fosfatidilcolinas/química , Agua/química , Emulsionantes/química
8.
ACS Appl Mater Interfaces ; 10(23): 19844-19852, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29771117

RESUMEN

Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, ß = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, ß = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm2/V s and an on/off ratio of 106 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.

9.
Langmuir ; 34(23): 6727-6736, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29751725

RESUMEN

We report on the structure and morphology of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) films in bottom-contact organic field-effect transistors (OFETs) with octadecyltrichlorosilane (OTS) coated SiO2 gate dielectric, characterized by atomic force microscopy (AFM), grazing-incidence X-ray diffraction (GIXRD), and electrical transport measurements. Three types of devices were investigated with the NaT2 thin-film deposited either on (1) pristine SiO2 (corresponding to higher surface energy, 47 mJ/m2) or on OTS deposited on SiO2 under (2) anhydrous or (3) humid conditions (corresponding to lower surface energies, 20-25 mJ/m2). NaT2 films grown on pristine SiO2 form nearly featureless three-dimensional islands. NaT2 films grown on OTS/SiO2 deposited under anhydrous conditions form staggered pyramid islands where the interlayer spacing corresponds to the size of the NaT2 unit cell. At the same time, the grain size measured by AFM increases from hundreds of nanometers to micrometers and the crystal size measured by GIXRD from 30 nm to more than 100 nm. NaT2 on OTS/SiO2 deposited under humid conditions also promotes staggered pyramids but with smaller crystals 30-80 nm. The NaT2 unit cell parameters in OFETs differ 1-2% from those in bulk. Carrier mobilities tend to be higher for NaT2 layers on SiO2 (2-3 × 10-4 cm2/(V s)) compared to NaT2 on OTS (2 × 10-5-1 × 10-4 cm2/(V s)). An applied voltage does not influence the unit cell parameters when probed by GIXRD in operando.

10.
Rep Prog Phys ; 79(6): 066601, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27116082

RESUMEN

This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular and intermolecular interactions on optical excitations, electron-phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map of pressure-driven intra- and interchain interactions. Key obstacles to obtain further advances are identified and experimental methods to resolve them are suggested.

11.
Phys Chem Chem Phys ; 18(25): 16629-40, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26817700

RESUMEN

We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed.

12.
ACS Appl Mater Interfaces ; 7(14): 7795-800, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25798702

RESUMEN

We describe an emulsion-based preparation of patchy composite particles (diameter of 100-500 µm) consisting of a disclike epoxy core and a belt of porous polystyrene particles (diameter of 30 µm) with magnetite within the pores. Compared to the magnetically uniform polystyrene particles, the spontaneous aggregation of composite particles is suppressed when dispersed into liquid, which is attributed to the increased particle size, reduced magnetic susceptibility, and the shape of the magnetic domain distribution within the particles (spherical versus a belt). When the composite particles are coated by platinum-palladium layer we demonstrate they can be employed as switchable catalyst carriers, moving from one liquid phase to another when controlled by an external magnetic field.

13.
J Phys Chem B ; 119(7): 3231-41, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25590689

RESUMEN

We report on the structural and colorimetric effects of interaction of aqueous ∼0.06-1% poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-(6-trimethylammoniumhexyl)thiophene] bromide (PF2/6-P3TMAHT) with double-stranded DNA to form PF2/6-P3TMAHT(DNA)x where x is the molar ratio of DNA base pairs to P3TMAHT repeat units; x = 0.5 equals the nominal charge neutralization. PF2/6-P3TMAHT forms 20-40 nm sized particles with PF2/6 core and hydrated P3TMAHT exterior. The polymer particles form loose one-dimensional chains giving micrometer long branched chains (0.19 ≤ x ≤ 0.76) and subsequently randomly shaped aggregates (x = 1.89) upon DNA addition. Compaction of the P3TMAHT block and the 20-30 nm sized core is observed for x = 0.38-0.76 and attributed to the DNA merged within P3TMAHT domain with this structure disassembling with DNA excess. Structural transformations are followed by chromic changes seen as color changes from deep red (x < 0.076) to yellow (x = 0.19), nearly colorless (x = 0.38-0.76), and back to orange (x = 1.89). Both absorption and photoluminescence spectra display the distinct fluorene and thiophene bands and subsequent blue and red shifts when passing x = 0.5. Thiophene photoluminescence (PL) is significantly quenched by DNA with increasing x, and the changing P3TMAHT/PF2/6 band ratio allows quantitative DNA detection. Sixteen-fold dilution does not change aggregate structure, but PL is blue-shifted, indicating weakened intermolecular interactions.


Asunto(s)
Cationes/química , ADN/química , Fluorenos/química , Polímeros/química , Tiofenos/química , Agua/química , Bromuros/química , Color , Microscopía Electrónica de Transmisión , Estructura Molecular , Dispersión del Ángulo Pequeño , Soluciones , Análisis Espectral , Difracción de Rayos X
14.
ACS Appl Mater Interfaces ; 6(5): 3469-76, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24527791

RESUMEN

We use a magnetic field to align nickel particles into stringlike assemblies in urethane oligomer mixtures and create a semitransparent UV-curable nickel particle/polymer composite with anisotropic electrical conductivity and piezoresistive properties. When the particles are uniformly distributed in the oligourethane matrix, the mixture is moderately conductive at higher particle fractions but becomes insulating once the fraction is below about 5 vol %. With the particle fraction below this threshold and using an external magnetic field, the particles are aligned into continuous pathways through the oligomer mixtures following the magnetic flux lines. The matrix is subsequently cured by UV light. This results in conductivity and piezoresistivity along the alignment direction, while the material is not conducting perpendicular to the alignment direction. The lower particle fraction results in a lower number of absorbers for UV light: the decrease from 5 to 1 vol % increases optical transmission from 10% to 50% in the UV/vis region. This leads to a shorter photocuring time, typically from tens of seconds to seconds for 300-µm-thick films at a wavelength of 365 nm. We propose that this concept could be applied in areas such as pressure sensors.

15.
Langmuir ; 29(32): 10047-58, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23822142

RESUMEN

The amphiphilic properties of conjugated oligoelectrolytes (COE) and their sensitivity to the polarity of their microenvironment lead to interesting aggregation behavior, in particular in their interaction with surfactants. Photoluminescence (PL) spectroscopy, liquid-phase atomic force microscopy, small-angle neutron scattering, small-angle X-ray scattering, and grazing-incidence X-ray diffraction were used to examine interactions between cationic p-phenylene vinylene based oligoelectrolytes and surfactants. These techniques indicate the formation of COE/surfactant aggregates in aqueous solution, and changes in the photophysical properties are observed when compared to pure aqueous solutions. We evaluate the effect of the charge of the surfactant polar headgroup, the size of the hydrophobic chain, and the role of counterions. At low COE concentrations (micromolar), it was found that these COEs display larger emission quantum efficiencies upon incorporation into micelles, along with marked blue-shifts of the PL spectra. This effect is most pronounced in the series of anionic surfactants, and the degree of blue shifts as a function of surfactant charge is as follows: cationic < nonionic < anionic surfactants. In anionic surfactants, such as sodium dodecyl sulfate (SDS), the PL spectra show vibronic resolution above the critical micelle concentration of the surfactant, suggesting more rigid structures. Scattering data indicate that in aqueous solutions, trimers appear as essentially 3-dimensional particles, while tetra- and pentamers form larger, cylindrical particles. When the molar ratio of nonionic C12E5 surfactant to 1,4-bis(4-{N,N-bis-[(N,N,N-trimethylammonium)hexyl]amino}-styryl)benzene tetraiodide (DSBNI) is close to one, the size of the formed DSBNI-C12E5 particles corresponds to the full coverage of individual oligomers. When these particles are transferred into thin films, they organize into a cubic in-plane pattern. If anionic SDS is added, the formed DSBNI-SDS particles are larger than expected for full surfactant coverage, and particles may thus contain several oligomers. This tendency is attributed to the merging of DSBNI oligomers due to the charge screening and, thus, reduced water solubility.


Asunto(s)
Polivinilos/química , Estirenos/química , Tensoactivos/química , Electrólitos/química , Estructura Molecular
16.
Adv Mater ; 25(8): 1090-108, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23341026

RESUMEN

Knowledge of the phase behavior of polyfluorene solutions and gels has expanded tremendously in recent years. The relationship between the structure formation and photophysics is known at the quantitative level. The factors which we understand control these relationships include virtually all important materials parameters such as solvent quality, side chain branching, side chain length, molecular weight, thermal history and myriad functionalizations. This review describes advances in controlling structure and photophysical properties in polyfluorene solutions and gels. It discusses the demarcation lines between solutions, gels, and macrophase separation in conjugated polymers and reviews essential solid state properties needed for understanding of solutions. It gives an insight into polyfluorene and polyfluorene beta phase in solutions and gels and describes all the structural levels in solvent matrices, ranging from intramolecular structures to the diverse aggregate classes and network structures and agglomerates of these units. It goes on to describe the kinetics and thermodynamics of these structures. It details the manifold molecular parameters used in their control and continues with the molecular confinement and touches on permanently cross-linked networks. Particular focus is placed on the experimental results of archetypical polyfluorenes and solvent matrices and connection between structure and photonics. A connection is also made to the mean field type theories of hairy-rod like polymers. This altogether allows generalizations and provides a guideline for materials scientists, synthetic chemists and device engineers as well, for this important class of semiconductor, luminescent polymers.

17.
Langmuir ; 28(33): 12348-56, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22839776

RESUMEN

The absorption and photoluminescence spectra of the cationic conjugated polyelectrolyte poly[3-(6-trimethylammoniumhexyl)thiophene] (P3TMAHT) were observed to be dramatically altered in the presence of anionic surfactants due to self-assembly through ionic complex formation. Small-angle neutron scattering (SANS), UV/vis, and photoluminescence spectroscopy were used to probe the relationship between the supramolecular complex organization and the photophysical response of P3TMAHT in the presence of industrially important anionic surfactants. Subtle differences in the surfactant mole fraction and chemical structure (e.g., chain length, headgroup charge density, perfluorination) result in marked variations in the range and type of complexes formed, which can be directly correlated to a unique colorimetric and fluorimetric fingerprint. Our results show that P3TMAHT has potential as an optical sensor for anionic surfactants capable of selectively identifying distinct structural subgroups through dual mode detection.


Asunto(s)
Fenómenos Ópticos , Transición de Fase , Polímeros/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Tiofenos/química , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Modelos Moleculares , Conformación Molecular
18.
J Mol Biol ; 408(4): 670-83, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21402078

RESUMEN

The transcriptional repressor Rex is a sensor of the intracellular NADH/NAD(+) redox state through direct binding of NADH or NAD(+). Homodimeric Rex protein from Thermus aquaticus (T-Rex) and Bacillus subtilis (B-Rex) exists in several different conformations. In both organisms, Rex in complex with NADH has the DNA binding domains packed together at the dimer interface, whereas in the apo form of B-Rex the linkers connecting these domains to the core are flexible. The crystal structures of the apo forms of B-Rex and a mutated variant of T-Rex are radically different. We describe the solution structures of B-Rex in complex with NAD(+) or NADH and in its apo form, on the basis of small-angle X-ray scattering (SAXS) measurements. This study addresses to what extent the unusual orientation of the DNA recognition domains of the crystal structure of apo B-Rex is due to stabilization by crystal packing. Low-resolution ab initio solution structures were obtained for apo B-Rex, B-Rex:NADH and B-Rex:NAD(+). Models giving a more detailed picture of these three solution structures were obtained also by rigid body fitting of the crystallographic domains. The SAXS data confirm the elongated and flexible nature of apo-B-Rex and the existence of two distinct and more rigid conformations for the complexes with NADH and NAD(+). The models emerging from this study indicate a reaction mechanism for B-Rex in which the recognition domains are rotated upon binding to NADH.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , NAD/química , Conformación Proteica , Proteínas Recombinantes/química , Dispersión del Ángulo Pequeño , Soluciones/química , Thermus/metabolismo
19.
ACS Appl Mater Interfaces ; 3(2): 378-84, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21268639

RESUMEN

We show how an alternating electric field can be used to assemble carbon nanocones (CNCs) and align these assemblies into microscopic wires in a commercial two-component adhesive. The wires form continuous pathways that may electrically connect the alignment electrodes, which leads to directional conductivity (∼10(-3) S/m) on a macroscopic scale. This procedure leads to conductivity enhancement of at least 2-3 orders of magnitude in the case where the CNC fraction (∼0.2 vol %) is 1 order of magnitude below the percolation threshold (∼2 vol %). The alignment and conductivity are maintained on curing that joins the alignment electrodes permanently together. If the aligned CNC wires are damaged before curing, they can be realigned by an extended alignment period. This concept has implications in areas such as electronic packaging technology.

20.
Langmuir ; 26(19): 15634-43, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20822163

RESUMEN

We report on the phase transitions, solution structure, and consequent effect on the photophysical properties of poly[3-(6-trimethylammoniumhexyl)thiophene] bromide (P3TMAHT) in aqueous sodium dodecylsulfate (SDS). Polythiophene was mixed with SDS or deuterated SDS to form P3TMAHT(SDS)(x) complex (x = the molar ratio of surfactant over monomer units) in D(2)O and studied by small-angle neutron and X-ray scattering (SANS/SAXS) and optical spectroscopy. At room temperature, P3TMAHT forms charged aggregates with interparticle order. The addition of SDS eliminates the interparticle order and leads to rod-like (x = 1/5) or sheet-like polymer-SDS aggregates (x = 1/2 to 1) containing rod-like (x = 1/5 to 1/2) or sheet-like (x = 1/2 to 1) polymer associations. Partial precipitation occurs at the charge compensation point (x = 1). Ellipsoidal particles without interparticle order, reminiscent of SDS micelles modified by separated polymer chains, occur for x = 2 to 5. Free SDS micelles dominate for x = 20. Structural transitions lead to a concomitant variation in the solution color from red (P3TMAHT) to violet (x = 1/5 to 1) to yellow (x > 2). The photoluminescence fingerprint changes progressively from a broad featureless band (x = 0) through the band narrowing and appearance of vibronic structure (x = 1/5 to 1) to the return to a blue-shifted broad emission band (x = 5). The polymer stiffness reaches a maximum for x = 1, which leads to minimization of the Stokes shift (0.08 eV). This work gives fundamental information upon how surfactant complexation can influence both the solution structure and photophysical properties of a water-soluble polythiophene.


Asunto(s)
Electrólitos/química , Polímeros/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Tiofenos/química , Cationes , Estructura Molecular , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...