Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene ; 273(2): 305-15, 2001 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-11595177

RESUMEN

We have implemented a simplified high throughput approach to differential display in order to identify transcriptionally regulated genes in bacteria. In contrast with the few previous applications of differential display to prokaryotes, we use a large number of primers which allows for a high-density sampling of the mRNA population and the identification of many differentially amplified DNA fragments. From the overlap of these short sequences, long contiguous sequences that encode several genes can be assembled. The multiplicity of sampling provides a strong indication that the genes identified are indeed differentially regulated. As a test case, we looked for the genes involved in the degradation of 2,4-dinitrophenol (2,4-DNP) in a Rhodococcus erythropolis strain, HL PM-1. In this experiment a long polycistronic mRNA was sampled repeatedly. The induction of these genes by 2,4-DNP was confirmed by dot blot analysis and two of them were confirmed to be involved in the degradation of 2,4-DNP. This work shows that mRNA differential display is an important tool for the identification of metabolic genes in prokaryotes.


Asunto(s)
Operón/genética , ARN Mensajero/metabolismo , Rhodococcus/genética , 2,4-Dinitrofenol/metabolismo , 2,4-Dinitrofenol/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Picratos/metabolismo , Picratos/farmacología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhodococcus/efectos de los fármacos , Rhodococcus/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Tiempo
2.
Microbiology (Reading) ; 147(Pt 7): 1815-24, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11429459

RESUMEN

An enantioselective amidase was purified to homogeneity from Agrobacterium tumefaciens d3. The enzyme has a molecular mass of about 490000 Da and is composed of identical subunits with a molecular mass of about 63000 Da. The purified enzyme converted racemic 2-phenylpropionamide to the corresponding S-acid with an enantiomeric excess (ee) value >95% at almost 50% conversion of the racemic amide. The purified enzyme was digested with trypsin and the amino acid sequences of the N terminus and different tryptic peptides determined. These amino acid sequences were used to clone the encoding gene. Finally, a 9330 bp DNA fragment was sequenced and the amidase gene identified. The deduced amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. No indications of a structural coupling of the amidase gene with the genes for a nitrile hydratase could be found on the cloned DNA fragment. The amidase gene was encoded by an approximately 500 kb circular plasmid in A. tumefaciens d3. The amidase was heterologously expressed in Escherichia coli and, as well as 2-phenylpropionamide, was shown to hydrolyse alpha-chloro- and alpha-methoxyphenylacetamide and 2-methyl-3-phenylpropionamide highly enantioselectively. Some amino acids within a highly conserved region common amongst all known enantioselective amidases ('amidase signature') were changed by site-specific mutagenesis and significant changes in the relative activities with different amides observed.


Asunto(s)
Acetamidas/química , Acetamidas/metabolismo , Agrobacterium tumefaciens/enzimología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Agrobacterium tumefaciens/genética , Amidohidrolasas/química , Amidohidrolasas/aislamiento & purificación , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Análisis de Secuencia de ADN , Estereoisomerismo
3.
Biodegradation ; 12(3): 179-88, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11826899

RESUMEN

1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of 45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Km and Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate. The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate 1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.


Asunto(s)
Oxigenasas de Función Mixta/química , Naftalenos/metabolismo , Naftoles/metabolismo , Fenantrenos/metabolismo , Pseudomonas putida/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Biodegradación Ambiental , Catálisis , Medios de Cultivo , Electroforesis en Gel de Poliacrilamida , Inducción Enzimática , Concentración de Iones de Hidrógeno , Hidroxilación , Cinética , Oxigenasas de Función Mixta/biosíntesis , Oxigenasas de Función Mixta/aislamiento & purificación , Datos de Secuencia Molecular , NAD/metabolismo , Espectrofotometría Ultravioleta , Especificidad por Sustrato
4.
Biodegradation ; 12(5): 367-76, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11995829

RESUMEN

Initial F420-dependent hydrogenation of 2,4,6-trinitrophenol (picric acid) generated the hydride sigma-complex of picrate and finally the dihydride complex. With 2,4-dinitrophenol the hydride sigma-complex of 2,4-dinitrophenol is generated. The hydride transferring enzyme system showed activity against several substituted 2,4-dinitrophenols but not with mononitrophenols. A Km-value of 0.06 mM of the hydride transfer for picrate as substrate was found. The pH optima of the NADPH-dependent F420 reductase and for the hydride transferase were 5.5 and 7.5, respectively. An enzymatic activity has been identified catalyzing the release of stoichometric amounts of 1 mol nitrite from 1 mol of the dihydride sigma-complex of picrate. This complex was synthesized by chemical reduction of picrate and characterized by 1H and 13C NMR spectroscopy. The hydride sigma-complex of 2,4-dinitrophenol has been identified as the denitration product. The nitrite-eliminating activity was enriched and clearly separated from the hydride transferring enzyme system by FPLC. 2,4-Dinitrophenol has been disproven as a metabolite of picrate (Ebert et al. 1999) and a convergent catabolic pathway for picrate and 2,4-dinitrophenol with the hydride sigma-complex of 2,4-dinitrophenol as the common intermediate has been demonstrated.


Asunto(s)
2,4-Dinitrofenol/metabolismo , Actinomycetales/metabolismo , Picratos/metabolismo , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , Nitritos/metabolismo , Espectrofotometría Ultravioleta
5.
J Bacteriol ; 181(16): 4812-7, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10438749

RESUMEN

The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.


Asunto(s)
Catecoles/metabolismo , Dioxigenasas , Inhibidores Enzimáticos/metabolismo , Bacilos y Cocos Aerobios Gramnegativos/enzimología , Oxigenasas/metabolismo , Dominio Catalítico , Catecol 1,2-Dioxigenasa , Activación Enzimática/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Bacilos y Cocos Aerobios Gramnegativos/genética , Hierro/metabolismo , Hierro/farmacología , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxigenasas/química , Oxigenasas/genética , Unión Proteica/fisiología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
Appl Environ Microbiol ; 65(6): 2317-23, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10347008

RESUMEN

Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene.


Asunto(s)
Cupriavidus necator/metabolismo , Nitrofenoles/metabolismo , Nitrorreductasas/metabolismo , Biodegradación Ambiental , Cupriavidus necator/crecimiento & desarrollo , Nitrocompuestos/metabolismo , Compuestos Nitrosos/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
7.
J Bacteriol ; 181(9): 2669-74, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10217752

RESUMEN

2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these pi-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme.


Asunto(s)
2,4-Dinitrofenol/metabolismo , Actinomycetales/metabolismo , Picratos/metabolismo , Riboflavina/análogos & derivados , Aerobiosis , Secuencia de Aminoácidos , Biodegradación Ambiental , Methanobacterium/química , Modelos Biológicos , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/metabolismo , Riboflavina/química , Riboflavina/metabolismo , Espectrofotometría , Transferasas/metabolismo
8.
J Bacteriol ; 181(5): 1444-50, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10049374

RESUMEN

3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 is involved in the degradative pathway of 3-nitrophenol, in which it catalyzes the conversion of 3-hydroxylaminophenol to aminohydroquinone. To show that the reaction was really catalyzed by a single enzyme without the release of intermediates, the corresponding protein was purified to apparent homogeneity from an extract of cells grown on 3-nitrophenol as the nitrogen source and succinate as the carbon and energy source. 3-Hydroxylaminophenol mutase appears to be a relatively hydrophobic but soluble and colorless protein consisting of a single 62-kDa polypeptide. The pI was determined to be at pH 4.5. In a database search, the NH2-terminal amino acid sequence of the undigested protein and of two internal sequences of 3-hydroxylaminophenol mutase were found to be most similar to those of glutamine synthetases from different species. Hydroxylaminobenzene, 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme. The enzyme requires no oxygen or added cofactors for its reaction, which suggests an enzymatic mechanism analogous to the acid-catalyzed Bamberger rearrangement.


Asunto(s)
Cupriavidus necator/enzimología , Transferasas Intramoleculares/metabolismo , Secuencia de Aminoácidos , Bacterias/enzimología , Cromatografía de Afinidad , Cromatografía DEAE-Celulosa , Cupriavidus necator/crecimiento & desarrollo , Electroforesis en Gel de Poliacrilamida , Glutamato-Amoníaco Ligasa/química , Concentración de Iones de Hidrógeno , Transferasas Intramoleculares/química , Transferasas Intramoleculares/aislamiento & purificación , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Peso Molecular , Nitrofenoles/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Ultracentrifugación
9.
J Bacteriol ; 181(4): 1189-95, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9973345

RESUMEN

Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic sigma-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1.


Asunto(s)
Picratos/metabolismo , Rhodococcus/metabolismo , Aniones , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Hidrógeno , Modelos Químicos , Resonancia Magnética Nuclear Biomolecular , Picratos/química , Rhodococcus/crecimiento & desarrollo
10.
Appl Environ Microbiol ; 64(6): 2315-7, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9603860

RESUMEN

A bacterial strain (strain S5) which grows aerobically with the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy was isolated. This strain was obtained by continuous adaptation of "Hydrogenophaga palleronii" S1, which has the ability to grow aerobically with 4-aminobenzenesulfonate. Strain S5 probably cleaves 4-carboxy-4'-sulfoazobenzene reductively under aerobic conditions to 4-aminobenzoate and 4-aminobenzene-sulfonate, which are mineralized by previously established degradation pathways.


Asunto(s)
Compuestos Azo/metabolismo , Bacterias Aerobias/aislamiento & purificación , Bacterias Aerobias/metabolismo , Bencenosulfonatos/metabolismo , Bacterias Aerobias/genética , Biodegradación Ambiental , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA