Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 510(5): 508-24, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18680201

RESUMEN

Voltage-gated potassium (Kv) channels sculpt neuronal excitability and play important developmental roles. Kv channels consist of pore-forming alpha- and auxiliary subunits. For many Kv alpha-subunits, existing mRNA probes and antibodies have allowed analysis of expression patterns, typically during adult stages. Here, we focus on the Kv2.2 alpha-subunit, for which the mRNA shows broad expression in the embryo and adult. A lack of suitable antibodies, however, has hindered detailed analysis of Kv2.2 protein localization, especially during development. We developed an antibody that specifically recognizes Kv2.2 protein in Xenopus laevis, a vertebrate well suited for study of early developmental stages. The Kv2.2 antibody recognized heterologously expressed Kv2.2 but not the closely related Kv2.1 protein. Immunodetection of the protein showed its presence at St 32 in ventrolateral regions of the hindbrain and spinal cord. At later stages, several sensory tissues (retina, otic, and olfactory epithelia) also expressed Kv2.2 protein. As development progressed in the central nervous system, Kv2.2 protein distribution expanded in close association with the cytoskeletal marker alpha-tubulin, consistent with growth of neuronal tracts. We analyzed the subcellular distribution of Kv2.2 protein within single cultured neurons. In addition to a surface membrane presence, Kv2.2 protein also resided intracellularly closely associated with alpha-tubulin, as in vivo. Furthermore, in contrast to Kv2.1, Kv2.2 protein localized to long, axonal-like processes, consistent with its in vivo location in tracts. Despite their primary sequence similarity, the contrasting localizations of Kv2.1 and Kv2.2 support different roles for the two during development and neuronal signaling.


Asunto(s)
Larva , Subunidades de Proteína/metabolismo , Canales de Potasio Shab/metabolismo , Xenopus laevis , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Línea Celular , Humanos , Larva/anatomía & histología , Larva/fisiología , Neuronas/citología , Neuronas/metabolismo , Subunidades de Proteína/genética , Retina/citología , Retina/embriología , Retina/metabolismo , Canales de Potasio Shab/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología , Xenopus laevis/metabolismo
2.
J Neurophysiol ; 100(4): 2125-36, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18684900

RESUMEN

Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Raíces Nerviosas Espinales/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Western Blotting , Interpretación Estadística de Datos , Canales de Potasio de Tipo Rectificador Tardío/genética , Relación Dosis-Respuesta a Droga , Electrofisiología , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , ARN/biosíntesis , ARN/genética , Raíces Nerviosas Espinales/citología , Raíces Nerviosas Espinales/efectos de los fármacos , Proteínas de Xenopus/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...