Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Neural Syst Rehabil Eng ; 28(10): 2224-2235, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822301

RESUMEN

In this study, we estimated the multi-directional ankle mechanical impedance in two degrees-of-freedom (DOF) during standing, and determined how the stiffness, damping, and inertia vary with ankle angle and ankle torque at different postures. Fifteen subjects stood on a vibrating instrumented platform in four stationary postures, while subjected to pulse train perturbations in both the sagittal and frontal planes of motion. The four stationary postures were selected to resemble stages within the stance phase of the gait cycle: including post-heel-strike during the loading response, mid-stance, post-mid-stance, and just before the heel rises from the ground in terminal-stance phase. In general, the ankle stiffness and damping increased in all directions as the foot COP moved forward, and more torque is generated in plantarflexion. Interestingly, the multi-directional ankle impedance during standing showed a similar shape and major tilt axes to the results of non-loaded scenarios. However, there were notable differences in the impedance amplitude when the ankle was not under bodyweight loading. Last, the stiffness during standing had similar amplitudes ranges to the time-varying ankle stiffness during the stance phase of dynamic walking estimated in previous studies. These results have implications on the design of new, less physically intense, biomechanics experiments aimed at people with neuromuscular disorders or other physical impairments who cannot complete a standard gait test.


Asunto(s)
Articulación del Tobillo , Tobillo , Fenómenos Biomecánicos , Impedancia Eléctrica , Marcha , Postura , Caminata
2.
IEEE Int Conf Rehabil Robot ; 2017: 1413-1418, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28814018

RESUMEN

This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.


Asunto(s)
Tobillo/fisiología , Fenómenos Biomecánicos/fisiología , Caminata/fisiología , Adulto , Humanos , Masculino , Proyectos de Investigación , Vibración , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...