Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(34): 44756-44766, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38991019

RESUMEN

Lead bromide-based perovskites are promising materials as the top cells of tandem solar cells and for application in various fields requiring high voltages owing to their wide band gaps and excellent environmental resistances. However, several factors, such as the formation of bulk and surface defects, impede the performances of corresponding devices, thereby limiting the efficiencies of these devices as single-junction devices. To reduce the number of defect sites, urea is added to the formamidinium lead bromide (FAPbBr3) perovskite material to increase its grain size. Nevertheless, urea undesirably reacts with lead(II) bromide (PbBr2) in the perovskite structure, creating unfavorable impurities in the device. To solve this problem, herein, in addition to urea, we introduced formamidinium chloride (FACl) into FAPbBr3. Owing to the synergistic effect of urea and FACl, the FAPbBr3 film quality effectively improved due to suppression of the generation of impurities and stabilization of film crystallinity. Consequently, the FAPbBr3 single-junction solar cell constructed using FACl and urea as additives demonstrated a power conversion efficiency of 9.6% and an open-circuit voltage of 1.516 V with negligible hysteresis. This study provides new insights into the use of additive engineering for overcoming the energy losses caused by defects in perovskite films.

2.
ACS Appl Mater Interfaces ; 15(44): 51050-51058, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874850

RESUMEN

The cesium lead iodide (CsPbI3) perovskite solar cell possesses a wide band gap ranging from 1.65 to 1.75 eV, which is suitable for integration into a tandem structure along with a low-band-gap silicon solar cell. Moreover, CsPbI3 has received considerable attention as a potential solution for the prevalent issues of low thermal stability of organic-inorganic perovskite solar cells and phase segregation encountered in conventional mixed halide wide-band-gap perovskite solar cells. Through the implementation of volatile additives, CsPbI3 has demonstrated substantial advancements in efficiency, process temperature, and stability. This study introduces a novel approach for barium (Ba)-doping by spraying an antisolvent containing barium bis(trifluoromethanesulfonimide) during the spin-coating process. By incorporating Ba2+ through this spraying technique, the formation of the delta phase in CsPbI3 is significantly suppressed; thereby, a power conversion efficiency of 18.56% is achieved, and a remarkable 93% of the initial efficiency is maintained after 600 h.

3.
Mol Plant Pathol ; 24(5): 413-424, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762926

RESUMEN

We previously identified a protein spot that showed down-regulation in the presence of Cryphonectria hypovirus 1 (CHV1) and tannic acid supplementation as a Hsp90 co-chaperone p23 gene (CpCop23). The CpCop23-null mutant strain showed retarded growth with less aerial mycelia and intense pigmentation. Conidia of the CpCop23-null mutant were significantly decreased and their viability was dramatically diminished. The CpCop23-null mutant showed hypersensitivity to Hsp90 inhibitors. However, no differences in responsiveness were observed after exposure to other stressors such as temperature, reactive oxygen species, and high osmosis, the exception being cell wall-disturbing agents. A severe reduction in virulence was observed in the CpCop23-null mutant. Interestingly, viral transfer to the CpCop23-null mutant from CHV1-infected strain via anastomosis was more inefficient than a comparable transfer with the wild type as a result of decreased hyphal branching of the CpCop23-null mutant around the peripheral region, which resulted in less fusion of the hyphae. The CHV1-infected CpCop23-null mutant exhibited recovered mycelial growth with less pigmentation and sporulation. The CHV1-transfected CpCop23-null mutant demonstrated almost no virulence, that is, even less than that of the CHV1-infected wild type (UEP1), a further indication that reduced virulence of the mutant is not attributable exclusively to the retarded growth but rather is a function of the CpCop23 gene. Thus, this study indicates that CpCop23 plays a role in ensuring appropriate mycelial growth and development, spore viability, responses to antifungal drugs, and fungal virulence. Moreover, the CpCop23 gene acts as a host factor that affects CHV1-infected fungal growth and maintains viral symptom development.


Asunto(s)
Ascomicetos , Virus ARN , Virulencia/genética , Enfermedades de las Plantas/microbiología , Chaperonas Moleculares/metabolismo , Virus ARN/genética
4.
Cell Rep ; 41(2): 111481, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223750

RESUMEN

We show that a gene (CpGap1) encoding a glycosylphosphatidylinositol-anchored protein (GPI-AP) of the chestnut blight fungus Cryphonectria parasitica is differentially expressed by Cryphonectria hypovirus 1 (CHV1) infection. Functional analysis using a CpGap1-null mutant results in no observed changes in cultural morphology other than hypersensitivity to ROS. Analysis of the protein product of the CpGap1 gene (CpGAP1) confirmed motifs with antioxidizing properties. The virulence of the CpGap1-null mutant is significantly decreased, and phytotoxic activity is seen in the peptides of CpGAP1. CHV1 transfer to the CpGap1-null mutant results in severely retarded colonial growth, and virus-titer is significantly increased in the mycelia of CHV1-infected CpGap1-null mutant. These results indicate that CpGAP1 functions as a protective barrier against plant defenses, but also acts as a virulence factor. Moreover, our study demonstrates that the CpGap1 gene is a host-tolerating antiviral factor that helps maintain fungal growth and suppress viral titer after CHV1 infection.


Asunto(s)
Virus ARN , Antivirales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virus Fúngicos , Glicosilfosfatidilinositoles , Enfermedades de las Plantas , Virus ARN/genética , Especies Reactivas de Oxígeno , Virulencia/genética , Factores de Virulencia/genética
5.
Opt Express ; 30(20): 37085-37100, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258626

RESUMEN

Color balance is a critical concept in the application of functional transparent polymers from a customer's standpoint. In this study, multiple polar and non-polar fluorescent dyes are embedded simultaneously for the first time in a polydimethylsiloxane (PDMS) polymer matrix. Five dyes successfully coexist with the optimum blending ratio. Furthermore, simultaneous dispersing of polar and non-polar dyes in the polymer is achieved. Absorption and photoluminescence characteristics of multiple fluorescent dyes in PDMS medium are systemically deconvoluted and discussed. The competitive average visible transmittance and color balance of synthesized multi-fluorescent dye embedded PDMS is demonstrated by high color rendering index and CIE color space coordinates close to the white point. Additionally, the luminescent solar concentrator device demonstrates improved power conversion efficiency and light utilization efficiency than the pure PDMS waveguide-based device. Moreover, the long-term storage stability is demonstrated successfully. The findings, therefore, demonstrate the applicability of multi-fluorescent dye embedded PDMS to advanced transparent devices.

6.
J Microbiol ; 60(1): 57-62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826098

RESUMEN

Laccase3 is an important virulence factor of the fungus Cryphonectria parasitica. Laccase3 gene (lac3) transcription is induced by tannic acid, a group of phenolic compounds found in chestnut trees, and its induction is regulated by the hypovirus CHV1 infection. CpHsp24, a small heat shock protein gene of C. parasitica, plays a determinative role in stress adaptation and pathogen virulence. Having uncovered in our previous study that transcriptional regulation of the CpHsp24 gene in response to tannic acid supplementation and CHV1 infection was similar to that of the lac3, and that conserved phenotypic changes of reduced virulence were observed in mutants of both genes, we inferred that both genes were implicated in a common pathway. Building on this finding, in this paper we examined whether the CpHsp24 protein (CpHSP24) was a molecular chaperone for the lac3 protein (LAC3). Our pull-down experiment indicated that the protein products of the two genes directly interacted with each other. Heterologous co-expression of CpHsp24 and lac3 genes using Saccharomyces cerevisiae resulted in more laccase activity in the cotransformant than in a parental lac3-expresssing yeast strain. These findings suggest that CpHSP24 is, in fact, a molecular chaperone for the LAC3, which is critical component of fungal pathogenesis.


Asunto(s)
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Lacasa/metabolismo , Enfermedades de las Plantas/microbiología , Virus ARN/fisiología , Factores de Virulencia/metabolismo , Aesculus/metabolismo , Aesculus/microbiología , Aesculus/virología , Ascomicetos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico Pequeñas/genética , Lacasa/genética , Enfermedades de las Plantas/virología , Unión Proteica , Taninos/metabolismo , Factores de Virulencia/genética
7.
Arch Virol ; 167(1): 233-238, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34674011

RESUMEN

We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3' end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus "Alphahypovirus" of the family Hypoviridae. We accordingly designated this novel mycovirus "Trichoderma harzianum hypovirus 2" (ThHV2).


Asunto(s)
Ascomicetos , Virus ARN , Genoma Viral , Hypocreales , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Viral/genética , Proteínas Virales/genética
8.
J Fungi (Basel) ; 7(5)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923059

RESUMEN

Functional analysis of a GSP1/Ran ortholog, CpRan1, from Cryphonectria parasitica was conducted. Genotype analysis revealed that the putative CpRan1-null mutant was a heterokaryotic transformant harboring two different types of nuclei, one with the wild-type CpRan1 allele and the other with the CpRan1-null mutant allele. The mycelial growth and colony morphology of the heterokaryotic transformant was normal. Microscopic analysis of the resulting conidia (aseptate and monokaryotic asexual spores) demonstrated that although normal germinating spores were observed from conidia harboring a nucleus with the wild-type CpRan1 allele, a number of residual conidia that did not germinate existed. Complementation analysis using protoplasts from the heterokaryon with the wild-type CpRan1 allele confirmed that the CpRan1 gene is essential to C. parasitica. Complementation analysis using the various CpRan1 chimera constructs allowed us to perform a functional analysis of essential amino acids of the CpRan1. Among the four suggested essential amino acids, Lys-97 for ubiquitination was determined to not be an essential residue. Moreover, the CpRan1-null mutant allele was successfully complemented with mouse Ran gene, which suggested that the biological function of Ran gene is evolutionary conserved and that our heterokaryon rescue can be applied for the functional analysis of heterologous genes.

9.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563819

RESUMEN

Two DNA methyltransferase (DNMTase) genes from Cryphonectria parasitica have been previously identified as CpDmt1 and CpDmt2, which are orthologous to rid and dim-2 of Neurospora crassa, respectively. While global changes in DNA methylation have been associated with fungal sectorization and CpDmt1 but not CpDmt2 has been implicated in the sporadic sectorization, the present study continues to investigate the biological functions of both DNMTase genes. Transcription of both DNMTases is regulated in response to infection with the Cryphonectria hypovirus 1 (CHV1-EP713). CpDmt1 is upregulated and CpDmt2 is downregulated by CHV1 infection. Conidium production and response to heat stress are affected only by mutation of CpDmt1, not by CpDmt2 mutation. Significant changes in virulence are observed in opposite directions; i.e., the CpDmt1-null mutant is hypervirulent, while the CpDmt2-null mutant is hypovirulent. Compared to the CHV1-infected wild type, CHV1-transferred single and double mutants show severe growth retardation: the colony size is less than 10% that of the parental virus-free null mutants, and their titers of transferred CHV1 are higher than that of the wild type, implying that no defect in viral replication occurs. However, as cultivation proceeds, spontaneous viral clearance is observed in hypovirus-infected colonies of the null mutants, which has never been reported in this fungus-virus interaction. This study demonstrates that both DNMTases are significant factors in fungal development and virulence. Each fungal DNMTase affects fungal biology in both common and separate ways. In addition, both genes are essential to the antiviral responses, including viral clearance which depends on their mutations.IMPORTANCE Although relatively few in number, studies of DNA methylation have shown that fungal DNA methylation is implicated in development, genome integrity, and genome defense. While fungal DNMTase has been suggested as playing a role in genome defense, studies of the biological function of fungal DNMTase have been very limited. In this study, we have shown distinct biological functions of two DNA methyltransferases from the chestnut blight fungus C. parasitica We have demonstrated that DNMTases are important to fungal development and virulence. In addition, these genes are shown to play an important role in the fungal response to hypoviral CHV1 infection, including severely retarded colonial growth, and in viral clearance, which has never been previously observed in mycovirus infection. These findings provide a better understanding of the biological functions of fungal DNA methyltransferase and a basis for clarifying the epigenetic regulation of fungal virulence, responses to hypovirus infection, and viral clearance.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/patogenicidad , Metilación de ADN/genética , Virus Fúngicos/fisiología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ascomicetos/genética , Ascomicetos/virología , ADN de Hongos , Epigénesis Genética , Virus Fúngicos/genética , Regulación Fúngica de la Expresión Génica , Metiltransferasas/clasificación , Enfermedades de las Plantas/microbiología , Virulencia
10.
Adv Mater ; 32(51): e2002196, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33048400

RESUMEN

Hybrid tandem solar cells offer the benefits of low cost and full solar spectrum utilization. Among the hybrid tandem structures explored to date, the most popular ones have four (simple stacking design) or two (terminal/tunneling layer addition design) terminal electrodes. Although the latter design is more cost-effective than the former, its widespread application is hindered by the difficulty of preparing an interface between two solar cell materials. The oldest approach to the in-series bonding of two or more bandgap solar cells relies on the introduction of a tunneling layer in multijunction III-V solar cells, but it has some limitations, e.g., the related materials/technologies are applicable only to III-V and certain other solar cells. Thus, alternative methods of realizing junction contacts based on the use of novel materials are highly sought after. Here, the strategies used to realize high-performance tandem cells are described, focusing on interface control in terms of bonding two or more solar cells for tandem approaches. The presented information is expected to aid the establishment of ideal methods of connecting two or more solar cells to obtain the highest performance for different solar cell choices with minimized energy loss through the interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA