Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(27): eadn2723, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968356

RESUMEN

Spontaneous symmetry breaking (SSB) is key for our understanding of phase transitions and the spontaneous emergence of order. In this work, we report that, for a two-dimensional (2D) periodic metasurface with gain, SSB occurs in the lasing transition. We study diffractive hexagonal plasmon nanoparticle lattices, where the K-points in momentum space provide two modes that are degenerate in frequency and identically distributed in space. Using femtosecond pulses to energize the gain medium, we simultaneously capture single-shot real-space and Fourier-space images of laser emission. By combining Fourier and real space, we resolve the two order parameters for which symmetry breaking simultaneously occurs: spatial parity and U(1) (rotational) symmetry breaking, evident respectively as random relative mode amplitude and phase. The methodology reported in this work is generally applicable to 2D plasmonic and dielectric metasurfaces and opens numerous opportunities for the study of SSB and the emergence of spatial coherence in metaphotonics.

2.
ACS Photonics ; 11(6): 2480-2496, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911846

RESUMEN

Temporal dynamics of confined optical fields can provide valuable insights into light-matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide. To probe the resonant near-field enhancement, our IAC measurements make use of enhanced two-photon excited luminescence (TPEL) from semiconductor quantum dots deposited on the nanoparticle arrays. Thanks to the incoherent character of TPEL, the measurements are only sensitive to the fundamental optical fields and therefore can reveal clear signatures of their coherent temporal dynamics. In particular, we show that the excitation of a high-Q collective resonance gives rise to interference fringes at time delays as large as 500 fs, much greater than the incident pulse duration (150 fs). Based on these signatures, the basic characteristics of the resonances can be determined, including their Q factors, which are found to exceed 200. Furthermore, the measurements also reveal temporal beating between two different resonances, providing information on their frequencies and their relative contribution to the field enhancement. Finally, we present an approach to enhance the visibility of the resonances hidden in the IAC curves by converting them into spectrograms, which greatly facilitates the analysis and interpretation of the results. Our findings open up new perspectives on time-resolved studies of collective resonances in metasurfaces and other multiresonant systems.

3.
Sci Adv ; 9(51): eadj4637, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117880

RESUMEN

Plasmon resonances at the surface of metallic antennas allow for extreme enhancement of Raman scattering. Intrinsic to plasmonics, however, is that extreme field confinement lacks precise spectral control, which would hold great promise in shaping the optomechanical interaction between light and molecular vibrations. We demonstrate an experimental platform composed of a plasmonic nanocube-on-mirror antenna coupled to an open, tunable Fabry-Perot microcavity for selective addressing of individual vibrational lines of molecules with strong Raman scattering enhancement. Multiple narrow and intense optical resonances arising from the hybridization of the cavity modes and the plasmonic broad resonance are used to simultaneously enhance the laser pump and the local density of optical states, and are characterized using rigorous modal analysis. The versatile bottom-up fabrication approach permits quantitative comparison with the bare nanocube-on-mirror system, both theoretically and experimentally. This shows that the hybrid system allows for similar SERS enhancement ratios with narrow optical modes, paving the way for dynamical backaction effects in molecular optomechanics.

4.
Phys Rev Lett ; 130(1): 016901, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669214

RESUMEN

In analogy to cavity optomechanics, enhancing specific sidebands of a Raman process with narrowband optical resonators would allow for parametric amplification, entanglement of light and molecular vibrations, and reduced transduction noise. We report on the demonstration of waveguide-addressable sideband-resolved surface-enhanced Raman scattering (SERS). We realized a hybrid plasmonic-photonic resonator consisting of a 1D photonic crystal cavity decorated with a sub-20 nm gap dimer nanoantenna. Hybrid resonances in the near-IR provide designer Q factors of 1000, and Q/V=(λ^{3}/10^{6})^{-1}, with SERS signal strength on par with levels found in state-of-the-art purely plasmonic systems. We evidence Fano line shapes in the SERS enhancement of organic molecules, and quantitatively separate out the pump enhancement and optical reservoir contributions.


Asunto(s)
Óptica y Fotónica , Espectrometría Raman , Polímeros/química , Fotones
5.
ACS Appl Mater Interfaces ; 14(33): 38067-38076, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35943781

RESUMEN

Lead-halide perovskites offer excellent properties for lighting and display applications. Nanopatterning perovskite films could enable perovskite-based devices with designer properties, increasing their performance and adding novel functionalities. We demonstrate the potential of nanopatterning for achieving light emission of a perovskite film into a specific angular range by introducing periodic sol-gel structures between the injection and emissive layer by using substrate conformal imprint lithography (SCIL). Structural and optical characterization reveals that the emission is funnelled into a well-defined angular range by optical resonances, while the emission wavelength and the structural properties of the perovskite film are preserved. The results demonstrate a flexible and scalable approach to the patterning of perovskite layers, paving the way toward perovskite LEDs with designer angular emission patterns.

6.
Phys Rev Lett ; 128(22): 223902, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714263

RESUMEN

Coherent extreme-ultraviolet pulses from high-harmonic generation have ample applications in attosecond science, lensless imaging, and industrial metrology. However, tailoring complex spatial amplitude, phase, and polarization properties of extreme-ultraviolet pulses is made nontrivial by the lack of efficient optical elements. Here, we have overcome this limitation through nanoengineered solid samples, which enable direct control over amplitude and phase patterns of nonlinearly generated extreme-ultraviolet pulses. We demonstrate experimental configurations and emitting structures that yield spatially patterned beam profiles, increased conversion efficiencies, and tailored polarization states. Furthermore, we use the emitted patterns to reconstruct height profiles, probe the near-field confinement in nanostructures below the diffraction limit of the fundamental radiation, and to image complex structures through coherent diffractive emission from these structures. Our results pave the way for introducing sub-fundamental-wavelength resolution imaging, direct manipulation of beams through nanoengineered samples, and metrology of nanostructures into the extreme-ultraviolet spectral range.

7.
ACS Photonics ; 9(4): 1206-1217, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35480493

RESUMEN

Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes. We experimentally demonstrate 66.5% solar light absorption in free-standing 1 µm c-Si layers by hyperuniform nanostructuring for the spectral range of 400 to 1050 nm. The absorption equivalent photocurrent derived from our measurements is 26.3 mA/cm2, which is far above the highest found in literature for Si of similar thickness. Considering state-of-the-art Si PV technologies, we estimate that the enhanced light trapping can result in a cell efficiency above 15%. The light absorption can potentially be increased up to 33.8 mA/cm2 by incorporating a back-reflector and improved antireflection, for which we estimate a photovoltaic efficiency above 21% for 1 µm thick Si cells.

8.
ACS Photonics ; 8(12): 3506-3516, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34938824

RESUMEN

Molecular optomechanics describes surface-enhanced Raman scattering using the formalism of cavity optomechanics as a parametric coupling of the molecule's vibrational modes to the plasmonic resonance. Most of the predicted applications require intense electric field hotspots but spectrally narrow resonances, out of reach of standard plasmonic resonances. The Fano lineshapes resulting from the hybridization of dielectric-plasmonic resonators with a broad-band plasmon and narrow-band cavity mode allow reaching strong Raman enhancement with high-Q resonances, paving the way for sideband resolved molecular optomechanics. We extend the molecular optomechanics formalism to describe hybrid dielectric-plasmonic resonators with multiple optical resonances and with both free-space and waveguide addressing. We demonstrate how the Raman enhancement depends on the complex response functions of the hybrid system, and we retrieve the expression of Raman enhancement as a product of pump enhancement and the local density of states. The model allows prediction of the Raman emission ratio into different output ports and enables demonstrating a fully integrated high-Q Raman resonator exploiting multiple cavity modes coupled to the same waveguide.

9.
ACS Photonics ; 8(11): 3201-3208, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820474

RESUMEN

Photon recycling, the iterative process of re-absorption and re-emission of photons in an absorbing medium, can play an important role in the power-conversion efficiency of photovoltaic cells. To date, several studies have proposed that this process may occur in bulk or thin films of inorganic lead-halide perovskites, but conclusive proof of the occurrence and magnitude of this effect is missing. Here, we provide clear evidence and quantitative estimation of photon recycling in CsPbBr3 nanocrystal suspensions by combining measurements of steady-state and time-resolved photoluminescence (PL) and PL quantum yield with simulations of photon diffusion through the suspension. The steady-state PL shows clear spectral modifications including red shifts and quantum yield decrease, while the time-resolved measurements show prolonged PL decay and rise times. These effects grow as the nanocrystal concentration and distance traveled through the suspension increase. Monte Carlo simulations of photons diffusing through the medium and exhibiting absorption and re-emission account quantitatively for the observed trends and show that up to five re-emission cycles are involved. We thus identify 4 quantifiable measures, PL red shift, PL QY, PL decay time, and PL rise time that together all point toward repeated, energy-directed radiative transfer between nanocrystals. These results highlight the importance of photon recycling for both optical properties and photovoltaic applications of inorganic perovskite nanocrystals.

10.
Nat Nanotechnol ; 16(12): 1378-1385, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608268

RESUMEN

Plasmonic resonances can concentrate light into exceptionally small volumes, which approach the molecular scale. The extreme light confinement provides an advantageous pathway to probe molecules at the surface of plasmonic nanostructures with highly sensitive spectroscopies, such as surface-enhanced Raman scattering. Unavoidable energy losses associated with metals, which are usually seen as a nuisance, carry invaluable information on energy transfer to the adsorbed molecules through the resonance linewidth. We measured a thousand single nanocavities with sharp gap plasmon resonances spanning the red to near-infrared spectral range and used changes in their linewidth, peak energy and surface-enhanced Raman scattering spectra to monitor energy transfer and plasmon-driven chemical reactions at their surface. Using methylene blue as a model system, we measured shifts in the absorption spectrum of molecules following surface adsorption and revealed a rich plasmon-driven reactivity landscape that consists of distinct reaction pathways that occur in separate resonance energy windows.

11.
J Phys Chem C Nanomater Interfaces ; 125(22): 12050-12060, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34276862

RESUMEN

We report on a Python toolbox for unbiased statistical analysis of fluorescence intermittency properties of single emitters. Intermittency, that is, step-wise temporal variations in the instantaneous emission intensity and fluorescence decay rate properties, is common to organic fluorophores, II-VI quantum dots, and perovskite quantum dots alike. Unbiased statistical analysis of intermittency switching time distributions, involved levels, and lifetimes are important to avoid interpretation artifacts. This work provides an implementation of Bayesian changepoint analysis and level clustering applicable to time-tagged single-photon detection data of single emitters that can be applied to real experimental data and as a tool to verify the ramifications of hypothesized mechanistic intermittency models. We provide a detailed Monte Carlo analysis to illustrate these statistics tools and to benchmark the extent to which conclusions can be drawn on the photophysics of highly complex systems, such as perovskite quantum dots that switch between a plethora of states instead of just two.

12.
J Phys Chem C Nanomater Interfaces ; 125(22): 12061-12072, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34276863

RESUMEN

We analyze intermittency in intensity and fluorescence lifetime of CsPbBr3 perovskite quantum dots by applying unbiased Bayesian inference analysis methods. We apply change-point analysis (CPA) and a Bayesian state clustering algorithm to determine the timing of switching events and the number of states between which switching occurs in a statistically unbiased manner, which we have benchmarked particularly to apply to highly multistate emitters. We conclude that perovskite quantum dots display a plethora of gray states in which brightness, broadly speaking, correlates inversely with decay rate, confirming the multiple recombination centers model. We leverage the CPA partitioning analysis to examine aging and memory effects. We find that dots tend to return to the bright state before jumping to a dim state and that when choosing a dim state, they tend to explore the entire set of states available.

13.
ACS Appl Nano Mater ; 4(1): 288-296, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33521589

RESUMEN

Silicon nanoparticles (Si-NPs) represent one of many types of nanomaterials, where the origin of emission is difficult to assess due to a complex interplay between the core and surface chemistry. Band-gap tunability in Si-NPs is predicted to span from the infrared to the ultraviolet spectral range, which is rarely observed in practice. In this work, we directly assess the size dependence of the optical band gap using a single-dot correlative microscopy tool, where the size of the individual NPs is measured using atomic force microscopy (AFM) and the optical band gap is evaluated from single-dot photoluminescence measured on the very same NPs. We analyze 2-8 nm alkyl-capped Si-NPs prepared by a sol-gel method, followed by annealing at 1300 °C. Surprisingly, we find that the optical band gap is given by the amorphous shell, as evidenced by the convergence of the optical band gap size dependence toward the amorphous Si band gap of ∼1.56 eV. We propose that the structural disorder might be the reason behind the often reported limited emission tunability from various Si-NPs in the literature. We believe that our message points toward a pressing need for development and broader use of such direct correlative single-dot microscopy methods to avoid possible misinterpretations that could arise from attempts to recover size-band gap relation from ensemble methods, as practiced nowadays.

14.
ACS Photonics ; 7(11): 3246-3256, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33241077

RESUMEN

Super-resolution imaging is often viewed in terms of engineering narrow point spread functions, but nanoscale optical metrology can be performed without real-space imaging altogether. In this paper, we investigate how partial knowledge of scattering nanostructures enables extraction of nanoscale spatial information from far-field radiation patterns. We use principal component analysis to find patterns in calibration data and use these patterns to retrieve the position of a point source of light. In an experimental realization using angle-resolved cathodoluminescence, we retrieve the light source position with an average error below λ/100. The patterns found by principal component analysis reflect the underlying scattering physics and reveal the role the scattering nanostructure plays in localization success. The technique described here is highly general and can be applied to gain insight into and perform subdiffractive parameter retrieval in various applications.

15.
ACS Nano ; 14(10): 13806-13815, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32924433

RESUMEN

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a general and scalable approach to increase both light absorption and excitonic coupling of QDs by fabricating hierarchical metamaterials. We assemble QDs into crystalline supraparticles using an emulsion template and demonstrate that these colloidal supercrystals (SCs) exhibit extended resonant optical behavior resulting in an enhancement in absorption efficiency in the visible range of more than 2 orders of magnitude with respect to the case of dispersed QDs. This successful light trapping strategy is complemented by the enhanced excitonic coupling observed in ligand-exchanged SCs, experimentally demonstrated through ultrafast transient absorption spectroscopy and leading to the formation of a free biexciton system on sub-picosecond time scales. These results introduce a colloidal metamaterial designed by self-assembly from the bottom up, simultaneously featuring a combination of nanoscale and mesoscale properties leading to simultaneous photonic and excitonic coupling, therefore presenting the nanocrystal analogue of supramolecular structures.

16.
ACS Nano ; 14(9): 12027-12036, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32870669

RESUMEN

Localizing light to nanoscale volumes through nanoscale resonators that are low loss and precisely tailored in spectrum to properties of matter is crucial for classical and quantum light sources, cavity QED, molecular spectroscopy, and many other applications. To date, two opposite strategies have been identified: to use either plasmonics with deep subwavelength confinement yet high loss and very poor spectral control or instead microcavities with exquisite quality factors yet poor confinement. In this work we realize hybrid plasmonic-photonic resonators that enhance the emission of single quantum dots, profiting from both plasmonic confinement and microcavity quality factors. Our experiments directly demonstrate how cavity and antenna jointly realize large cooperative Purcell enhancements through interferences. These can be controlled to engineer arbitrary Fano lineshapes in the local density of optical states.

17.
ACS Nano ; 14(8): 10562-10568, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32687323

RESUMEN

Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics.

18.
Nano Lett ; 19(12): 8418-8423, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31675241

RESUMEN

Image processing and edge detection are at the core of several newly emerging technologies, such as augmented reality, autonomous driving, and more generally object recognition. Image processing is typically performed digitally using integrated electronic circuits and algorithms, implying fundamental size and speed limitations, as well as significant power needs. On the other hand, it can also be performed in a low-power analog fashion using Fourier optics, requiring, however, bulky optical components. Here, we introduce dielectric metasurfaces that perform optical image edge detection in the analog domain using a subwavelength geometry that can be readily integrated with detectors. The metasurface is composed of a suitably engineered array of nanobeams designed to perform either first- or second-order spatial differentiation. We experimentally demonstrate the second-derivative operation on an input image, showing the potential of all-optical edge detection using a silicon metasurface geometry working at a numerical aperture as large as 0.35.

19.
ACS Nano ; 13(7): 7377-7382, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31244049

RESUMEN

Plasmon nanocavity array lasers leverage the combination of locally enhanced electromagnetic fields at localized particle plasmons with collective diffractive effects in periodic lattice geometries for low-threshold lasing with excellent coherence, line width, and directivity. This combination is enabled by the collective reduction of ohmic and radiative loss of plasmon antennas that hybridize to form surface lattice resonances. At the same time, candidate lasing modes compete for gain in the tight confines of the unit cell, where electromagnetic fields and population inversion are strongly structured in space, time, and polarization. This Perspective reviews the state of the art in understanding and manipulating this balance to combat losses and to optimize gain.

20.
Nat Commun ; 9(1): 4742, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413691

RESUMEN

Controlling the directivity of emission and absorption at the nanoscale holds great promise for improving the performance of optoelectronic devices. Previously, directive structures have largely been centered in two categories-nanoscale antennas, and classical lenses. Herein, we utilize an evolutionary algorithm to design 3D dielectric nanophotonic lens structures leveraging both the interference-based control of antennas and the broadband operation of lenses. By sculpting the dielectric environment around an emitter, these nanolenses achieve directivities of 101 for point-sources, and 67 for finite-source nanowire emitters; 3× greater than that of a traditional spherical lens with nearly constant performance over a 200 nm wavelength range. The nanolenses are experimentally fabricated on GaAs nanowires, and characterized via photoluminescence Fourier microscopy, with an observed beaming half-angle of 3.5° and a measured directivity of 22. Simulations attribute the main limitation in the obtained directivity to imperfect alignment of the nanolens to the nanowire beneath.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...