Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J Plus ; 137(10): 1102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213053

RESUMEN

A mobile remote standoff Raman spectroscopy system operational at typical distances of 10 m was developed specifically for research of historical sites and wall paintings recently. Here we present an upgrade to that system informed by a thorough experimental investigation of the relevant laser-induced degradation issues. Reflectance spectroscopy as a more sensitive technique than Raman spectroscopy was used for monitoring and a new phenomenon of reversible alterations was detected in many paint samples at very low laser intensities of less than 1 W/cm2 when Raman measurements detected no changes. Contrary to conventional wisdom, the intensity threshold for safe operation was found to decrease significantly for larger incident irradiation area in the case of a vermilion oil paint sample. Damage threshold in intensity for each material needs to be determined for different spot sizes, which can be orders of magnitude lower for 1 mm spot size compared with micro-Raman. Results from this study is also relevant to portable Raman systems which use similarly large spot sizes. However, the larger spot size still generates more Raman photons overall under safe operation than micro-Raman systems. Continuous-wave (CW) lasers are found to be best suited to efficient, that is more Raman signal detected over a given measurement time, and safe Raman operation than ns-pulse lasers at the same wavelength. While the damage threshold in intensity for ns-pulse lasers is much higher than that of CW lasers, the pulse energy allowed in one pulse for safe operation is still too low to allow detection of Raman signal, and the need for multiple pulses makes pulse laser inefficient owing to the low repetition rate necessary to ensure adequate heat dissipation between pulses. The safety of the upgraded system was evaluated and found that no permanent laser-induced degradation was detected within 60 s of laser irradiation for any of the paint samples.

2.
Sci Rep ; 10(1): 19312, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168925

RESUMEN

Automatic remote reflectance spectral imaging of large painted areas in high resolution, from distances of tens of meters, has made the imaging of entire architectural interior feasible. However, it has significantly increased the volume of data. Here we present a machine learning based method to automatically detect 'hidden' writings and map material variations. Clustering of reflectance spectra allowed materials at inaccessible heights to be properly identified by performing non-invasive analysis on regions in the same cluster at accessible heights using a range of complementary spectroscopic techniques. The world heritage site of the Mogao caves, along the ancient Silk Road, consists of 492 richly painted Buddhist cave temples dating from the fourth to fourteenth century. Cave 465 at the northern end of the site is unique in its Indo-Tibetan tantric Buddhist style, and like many other caves, the date of its construction is still under debate. This study demonstrates the powers of an interdisciplinary approach that combines material identification, palaeographic analysis of the revealed Sanskrit writings and archaeological evidence for the dating of the cave temple paintings, narrowing it down to the late twelfth century to thirteenth century.

3.
Opt Express ; 27(22): 31338-31347, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684368

RESUMEN

Portable and mobile Raman spectroscopy systems are increasingly being adopted in in situ non-invasive examination of artworks given their high specificity in material identification. However, these systems typically operate within centimeter range working distances, making the examination of large architectural interiors such as wall paintings in churches challenging. We demonstrate the first standoff Raman spectroscopy system for in situ investigation of historic architectural interior at distances > 3 m. The 780 nm continuous wave laser-induced standoff Raman system was successfully deployed for the in situ examination of wall paintings, at distances of 3-15 m, under ambient light. It is able to identify most common pigments while maintaining a very low laser intensity to avoid light induced degradation. It is shown to complement our current method of standoff remote surveys of wall paintings using spectral imaging.

4.
Opt Express ; 25(16): 19640-19653, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041156

RESUMEN

This paper examines for the first time the potential complementary imaging capabilities of Optical coherence tomography (OCT) and non-linear microscopy (NLM) for multi-modal 3D examination of paintings following the successful application of OCT to the in situ, non-invasive examination of varnish and paint stratigraphy of historic paintings and the promising initial studies of NLM of varnish samples. OCT provides image contrast through the optical scattering and absorption properties of materials, while NLM provides molecular information through multi-photon fluorescence and higher harmonics generation (second and third harmonic generation). OCT is well-established in the in situ non-invasive imaging of the stratigraphy of varnish and paint layers. While NLM examination of transparent samples such as fresh varnish and some transparent paints showed promising results, the ultimate use of NLM on paintings is limited owing to the laser degradation effects caused by the high peak intensity of the laser source necessary for the generation of non-linear phenomena. The high intensity normally employed in NLM is found to be damaging to all non-transparent painting materials from slightly scattering degraded varnish to slightly absorbing paint at the wavelength of the laser excitation source. The results of this paper are potentially applicable to a wide range of materials given the diversity of the materials encountered in paintings (e.g. minerals, plants, insects, oil, egg, synthetic and natural varnish).

5.
Opt Express ; 20(4): 3990-6, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418156

RESUMEN

A new diagnostic approach for assessing the in-depth laser induced modifications upon ultraviolet polymer irradiation is presented. The methodology relies on the observation of morphological alterations in the bulk material (Paraloid B72) by using third harmonic generation. This non destructive methodology allows the detailed and accurate imaging of the structurally laser modified zone extent in the vicinity of the irradiated area. Additionally, for the first time, the visualization and quantitative determination of the contour of the laser-induced swelling/bulk material interface is reported. The observed polymer surface swelling following single-pulse KrF laser irradiation at sub-ablation fluences is interpreted in the context of a model for laser-induced bubble formation due to droplet explosion mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...