Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Eng Regen Med ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904732

RESUMEN

BACKGROUND: Stem cell-based transplantation therapy holds promise for peripheral nerve injury treatment, but adult availability is limited. A cell culture protocol utilizing a small-molecule cocktail effectively reprogrammed stem cells from apical papilla (SCAPs) into neural progenitor cells, subsequently differentiating into neuron-like cells. This study aims to evaluate neural-induced SCAPs, with and without small-molecule cocktail, for sciatic nerve repair potential. METHODS: A scaffold-free cell sheet technique was used to construct a three-dimensional cell sheet. Subsequently, this cell sheet was carefully rolled into a tube and seamlessly inserted into a collagen conduit, which was then transplanted into a 5 mm sciatic nerve injury rat model. Functional sciatic nerve regeneration was evaluated via toe spread test, walking track analysis and gastrocnemius muscle weight. Additionally, degree of sciatic nerve regeneration was determined based on total amount of myelinated fibers. RESULTS: Small-molecule cocktail induced SCAPs enhanced motor function recovery, evident in improved sciatic function index and gastrocnemius muscle retention. We also observed better host myelinated fiber retention than undifferentiated SCAPs or neural-induced SCAPs without small-molecule cocktail. However, clusters of neuron-like cell bodies (surrounded by sparse myelinated fibers) were found in all cell sheet-implanted groups in the implantation region. This suggests that while the implanted cells likely survived transplantation, integration was poor and would likely hinder long-term recovery by occupying the space needed for host nerve fibers to project through. CONCLUSION: Neural-induced SCAPs with small-molecule cocktail demonstrated promising benefits for nerve repair; further research is needed to improve its integration and optimize its potential for long-term recovery.

2.
Bioengineering (Basel) ; 9(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36354515

RESUMEN

Cell-based neural regeneration is challenging due to the difficulty in obtaining sufficient neural stem cells with clinical applicability. Stem cells from apical papilla (SCAPs) originating from embryonic neural crests with high neurogenic potential could be a promising cell source for neural regeneration. This study aimed to investigate whether the formation of 3D spheres can promote SCAPs' neurogenic potential. MATERIAL AND METHODS: Three-dimensional SCAP spheres were first generated in a 256-well agarose microtissue mold. The spheres and single cells were individually cultured on collagen I-coated µ-slides. Cell morphological changes, neural marker expression, and neurite outgrowth were evaluated by confocal microscope, ELISA, and RT-qPCR. RESULTS: Pronounced morphological changes were noticed in a time-dependent manner. The migrating cells' morphology changed from fibroblast-like cells to neuron-like cells. Compared to the 2D culture, neurite length, number, and the expression of multiple progenitors, immature and mature neural markers were significantly higher in the 3D spheres. BDNF and NGF-ß may play a significant role in the neural differentiation of SCAP spheres. CONCLUSION: The formation of 3D spheres enhanced the neurogenic potential of SCAPs, suggesting the advantage of using the 3D spheres of SCAPs for treating neural diseases.

3.
Biomater Adv ; 138: 212868, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35913250

RESUMEN

The radical treatment of neurological impairments remains a major clinical challenge. Stem cells with high neural differentiation ability delivered by electroconductive hydrogel scaffolds have demonstrated promising applications in neural tissue regeneration. However, there are still challenges in designing bioactive scaffolds with good biocompatibility, appropriate electrical conductivity, and neurogenic niche. Herein, a three-dimensional (3D) electroconductive gelatin methacryloyl-multi-walled carbon nanotube/cobalt (GelMA-MWCNTs/Co) hydrogel scaffold was fabricated by incorporating MWCNTs/Co composites into a GelMA hydrogel matrix. The surface morphology, pore size, elastic modulus, swelling ratio, and conductivity of the hydrogels were measured. GelMA-MWCNTs/Co exhibited higher electrical conductivity than GelMA-MWCNTs. Live/dead and CCK8 assays demonstrated the good biocompatibility of the hydrogel for stem cells from apical papilla (SCAP) growth and differentiation. The cells encapsulated in the GelMA-MWCNTs and GelMA-MWCNTs/Co hydrogel scaffolds exhibited significant neuronal cell-like changes and a notable level of neuronal-specific marker expression after the electrical stimulation (ES) for 7 days, compared to that in the hydrogels without ES. Notably, the neurite spreading and Tuj1 fluorescent intensity of the SCAP in the electrically conductive GelMA-MWCNTs/Co hydrogel were more prominent compared to those of the other two groups. In addition, the 3D conductive hydrogel scaffolds advanced the neural differentiation of SCAP to an earlier time point. Considering these aspects, the novel electroconductive GelMA-MWCNTs/Co hydrogel synergized with ES greatly promotes SCAP neuronal differentiation.


Asunto(s)
Hidrogeles , Nanotubos de Carbono , Gelatina/farmacología , Metacrilatos , Células Madre
4.
Behav Brain Res ; 385: 112559, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32097707

RESUMEN

Measures of anxiety in behavioural tests remain largely unclear even decades after their establishment. Differences in the severity of anxiety measured by anxiety tests is an important issue that must be addressed. To test the hypothesis that the addition of light as an aversive stimulus will elicit a difference in behaviour between aged and young animals, we compared the responses of aged and young animals in the home cage emergence test (HCET) and elevated plus maze (EPM), in high aversive bright light and low aversive dim light conditions. In the HCET, our results demonstrated that young animals escaped with shorter latency and greater frequency than aged animals in both bright and dim light conditions, indicating that young animals display greater exploratory tendencies than aged animals. In the EPM, bright light conditions induced anxiogenic effects in both age groups. Interestingly, two-way ANOVA showed a significant interaction effect of age and light on the number of entries into the open arms of the EPM as well as frequency of escape in the HCET. These results show that the addition of light as an aversive stimulus in the EPM and HCET produced different responses in aged versus young animals in each test. In conclusion, significant interactions between age and light affected aged and young animals differently in the HCET and EPM, indicating that the two tests measure different aspects of anxiety.


Asunto(s)
Ansiedad , Conducta Animal/fisiología , Prueba de Laberinto Elevado , Conducta Exploratoria , Luz , Factores de Edad , Animales , Reacción de Prevención/fisiología , Conducta de Elección/fisiología , Ratas , Ratas Sprague-Dawley
5.
Aging Dis ; 11(1): 179-190, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32010491

RESUMEN

Deep brain stimulation (DBS) is a promising treatment for many memory-related disorders including dementia, anxiety, and addiction. However, the use of DBS can be a paradoxical conundrum-dementia treatments aim to improve memory, whereas anxiety or addiction treatments aim to suppress maladaptive memory. In this review, the key hypotheses on how DBS affects memory are highlighted. We consolidate the findings and conclusions from the current research on the effects of DBS on memory in attempt to make sense of the bidirectional nature of DBS in disrupting and enhancing memory. Based on the current literature, we hypothesize that the timing of DBS plays a key role in its contradictory effects, and therefore, we propose a consolidated model of how DBS can both disrupt and enhance memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...