Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(19): e202319874, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372180

RESUMEN

Helical nanographenes with high quantum yields and strong chiroptical responses are pivotal for developing circularly polarized luminescence (CPL) materials. Here, we present the successful synthesis of novel π-extended double [7]helicenes (ED7Hs) where two helicene units are fused at the meta- or para-position of the middle benzene ring, respectively, as the structural isomers of the reported ortho-fused ED7H. The structural geometry of these ED7Hs is clearly characterized by single-crystal X-ray analysis. Notably, this class of ED7Hs exhibits bright luminescence with high quantum yields exceeding 40 %. Through geometric regulation of two embedded [7]helicene units from ortho-, meta- to para-position, these ED7Hs display exceptional amplification in chiroptical responses. This enhancement is evident in a remarkable approximate fivefold increase in the absorbance and luminescence dissymmetry factors (gabs and glum), respectively, along with a boosted CPL brightness up to 176 M-1 cm-1, surpassing the performance of most helicene-based chiral NGs. Furthermore, DFT calculations elucidate that the geometric adjustment of two [7]helicene units allows the precise alignment of electric and magnetic transition dipole moments, leading to the observed enhancement of their chiroptical responses. This study offers an effective strategy for magnifying the CPL performance in chiral NGs, promoting their expanded application as CPL emitters.

2.
ACS Omega ; 9(4): 4754-4761, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313528

RESUMEN

Due to some useful mechanical, dynamic, and dielectric properties along with the ease of processing and forming, liquid rubbers are ideal materials for fabricating dielectric elastomer actuators in various configurations and for many potential applications ranging from automation to automobile and medical industry. In this study, we present a cross-linkable liquid rubber composition where amine-catalyzed esterification reactions lead to the formation of a network structure based on anhydride functional isoprene rubber, carboxyl-terminated nitrile-butadiene rubber, and epoxy end-capped prepolymers. The success of this intricate network formation procedure was verified by HR-MAS NMR spectroscopy. The new isoprene-based elastomeric material exhibits actuation-relevant attributes including a low elastic modulus of 0.45 MPa, soft response to an applied load up to a large deformation of 300%, and a dielectric constant value (2.6) higher than the conventional Elastosil silicone (2.2). A dot actuator comprising of an isoprene dielectric elastomer film in unstretched state and carbon paste electrodes was fabricated that demonstrated an electrode deformation of 0.63%, which is nearly twice as high as for the commercial Elastosil 2030 film (∼0.30%) at 5 kV. Compared to the Elastosil silicone film, the enhanced performance is attributed to the low modulus and high dielectric constant value of the new isoprene elastomer.

3.
J Am Chem Soc ; 146(1): 1026-1034, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117539

RESUMEN

Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.

4.
J Am Chem Soc ; 145(49): 26824-26832, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38048528

RESUMEN

Helical nanographenes (NGs) have attracted increasing attention recently because of their intrinsic chirality and exotic chiroptical properties. However, the efficient synthesis of extended helical NGs featuring a multilayer topology is still underdeveloped, and their layer-dependent chiroptical properties remain elusive. In this study, we demonstrate a modular synthetic strategy to construct a series of novel helical NGs (1-3) with a multilayer topology through a consecutive Diels-Alder reaction and regioselective cyclodehydrogenation from the readily accessible phenanthrene-based precursors bearing ethynyl groups. The resultant NGs exhibit bilayer, trilayer, and tetralayer structures with elongated π extension and rigid helical backbones, as unambiguously confirmed by single-crystal X-ray or electron diffraction analysis. We find that the photophysical properties of these helical NGs are notably influenced by the degree of π extension, which varies with the number of layers, leading to obvious redshifted absorption, a fast rising molar extinction coefficient (ε), and markedly boosted fluorescence quantum yield (Φf). Moreover, the embedded [7]helicene subunits in these NGs result in stable chirality, enabling both chiral resolution and exploration of their layer-dependent chiroptical properties. Profiting from the good alignment of electric and magnetic dipole moments determined by the multilayer structure, the resultant NGs exhibit excellent circular dichroism and circularly polarized luminescence response with unprecedented high CPL brightness up to 168 M-1 cm-1, rendering them promising candidates for CPL emitters.

5.
J Am Chem Soc ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022930

RESUMEN

Efficient organic electronic devices are fabricated from both small molecules and disperse polymers, but materials with characteristics in between remain largely unexplored. Here, we present a gram-scale synthesis for a series of discrete n-type oligomers comprising alternating naphthalene diimide (NDI) and bithiophene (T2). Using C-H activation, discrete oligomers of type T2-(NDI-T2)n (n ≤ 7) and persistence lengths up to ∼10 nm are made. The absence of protection/deprotection reactions and the mechanistic nature of Pd-catalyzed C-H activation allow one to produce symmetrically terminated species almost exclusively, which is key to the fast preparation, high yields, and the general success of the reaction pathway. The reaction scope includes different thiophene-based monomers, end-capping to yield NDI-(T2-NDI)n (n ≤ 8), and branching at T2 units by nonselective C-H activation under certain conditions. We show how the optical, electronic, thermal, and structural properties depend on oligomer length along with a comparison to the disperse, polymeric analogue PNDIT2. From theory and experiments, we find that the molecular energy levels are not affected by chain length resulting from the strong donor-acceptor system. Absorption maxima saturate for n = 4 in vacuum and for n = 8 in solution. Linear oligomers T2-(NDI-T2)n are highly crystalline with large melting enthalpies up to 33 J/g; NDI-terminated oligomers show reduced crystallinity, stronger supercooling, and more phase transitions. Branched oligomers and those with bulky thiophene comonomers are amorphous. Large oligomers exhibit similar packing characteristics compared to PNDIT2, making these oligomers ideal models to study length-structure-function relationships at constant energy levels.

6.
Angew Chem Int Ed Engl ; 62(4): e202216193, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36413379

RESUMEN

The precision synthesis of helical bilayer nanographenes (NGs) with new topology is of substantial interest because of their exotic physicochemical properties. However, helical bilayer NGs bearing non-hexagonal rings remain synthetically challenging. Here we present the efficient synthesis of the first helical bilayer nonbenzenoid nanographene (HBNG1) from a tailor-made azulene-embedded precursor, which contains a novel [10]helicene backbone with two embedded heptagons. Single-crystal X-ray analysis reveals its highly twisted bilayer geometry with a record small interlayer distance of 3.2 Šamong the reported helical bilayer NGs. Notably, the close interlayer distance between the two layers offers intramolecular through-space conjugation as revealed by in situ spectroelectrochemistry studies together with DFT simulations. Furthermore, the chiroptical properties of the P/M enantiomers of HBNG1 are also evaluated by circular dichroism and circularly polarized luminescence.

7.
Nanoscale ; 14(12): 4654-4670, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262128

RESUMEN

Anti-(ds)-DNA antibodies are the serological hallmark of Systemic Lupus Erythematosus (SLE). They assemble in the bloodstream with (ds)-DNA, forming immunocomplexes, which spread all over the body causing, among the other symptoms, lupic glomerulonephritis. Pathological manifestations of the disease may be reduced by destabilizing or inhibiting the formation of the immunocomplexes. In this respect, glycodendrimers showed peculiar interacting abilities towards this kind of biomolecule. Various generations of open-shell maltose-decorated poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers and two oligopeptides with different polyethylene glycol units were synthesized and characterized, and then tested for their anti-SLE activity. The activity of glycodendrimers and oligopeptides was evaluated in human plasma from patients with SLE, compared to healthy plasma, by means of an enzyme-linked immunosorbent assay (ELISA), and electron paramagnetic resonance (EPR) characterization using spin-label and spin-probe techniques. Different strategies for the immunocomplex formation were tested. The results show that both kinds of glycodendrimers and oligopeptides inhibited the formation of immunocomplexes. Also, a partial breakdown of preformed immunocomplexes was observed. Both ELISA and EPR analyses indicated a better activity of glycodendrimers compared to oligopeptides, the 3rd generation PPI dendrimer being the most promising against SLE. This study highlights the possibility to develop a new class of dendritic therapeutics for the treatment of Lupus in pre-clinical studies.


Asunto(s)
Dendrímeros , Lupus Eritematoso Sistémico , ADN , Dendrímeros/química , Dendrímeros/farmacología , Ensayo de Inmunoadsorción Enzimática , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Maltosa/química , Maltosa/farmacología , Oligopéptidos/farmacología
8.
Adv Sci (Weinh) ; 9(19): e2200708, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35322602

RESUMEN

Curved graphene nanoribbons (GNRs) with hybrid edge structures have recently attracted increasing attention due to their unique band structures and electronic properties as a result of their nonplanar conformation. This work reports the solution synthesis of a long and curved multi-edged GNR (cMGNR) with unprecedented cove-armchair-gulf edge structures. The synthesis involves an efficient A2 B2 -type Diels-Alder polymerization between a diethynyl-substituted prefused bichrysene monomer (3b) and a dicyclopenta[e,l]pyrene-5,11-dione derivative (6) followed by FeCl3 -mediated Scholl oxidative cyclodehydrogenation of the obtained polyarylenes (P1). Model compounds 1a and 1b are first synthesized to examine the suitability and efficiency of the corresponding polymers for the Scholl reaction. The successful formation of cMGNR from polymer P1 bearing prefused bichrysene units is confirmed by FTIR, Raman, and solid-state NMR analyses. The cove-edge structure of the cMGNR imparts the ribbon with a unique nonplanar conformation as revealed by density functional theory (DFT) simulation, which effectively enhances its dispersibility in solution. The cMGNR has a narrow optical bandgap of 1.61 eV, as estimated from the UV-vis absorption spectrum, which is among the family of low-bandgap solution-synthesized GNRs. Moreover, the cMGNR exhibits a carrier mobility of ≈2 cm2 V-1 s-1 inferred from contact-free terahertz spectroscopy.

9.
Angew Chem Int Ed Engl ; 61(23): e202202170, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35290699

RESUMEN

Open-shell non-alternant polycyclic hydrocarbons (PHs) are attracting increasing attention due to their promising applications in organic spintronics and quantum computing. Herein we report the synthesis of three cyclohepta[def]fluorene-based diradicaloids (1-3), by fusion of benzo rings on its periphery for the thermodynamic stabilization, as evidenced by multiple characterization techniques. Remarkably, all of them display a very narrow optical energy gap (Eg opt =0.52-0.69 eV) and persistent stability under ambient conditions (t1/2 =11.7-33.3 h). More importantly, this new type of diradicaloids possess a low-lying triplet state with an extremely small singlet-triplet energy gap, as low as 0.002 kcal mol-1 , with a clear dependence on the molecular size. This family of compounds thus offers a new route to create non-alternant open-shell PHs with high-spin ground states, and opens up novel possibilities and insights into understanding the structure-property relationships.

10.
Materials (Basel) ; 16(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36614510

RESUMEN

The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results.

11.
Angew Chem Int Ed Engl ; 60(25): 13853-13858, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33848044

RESUMEN

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6 H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2 ≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3).

12.
Org Lett ; 23(6): 2069-2073, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33651621

RESUMEN

In this work, we describe the synthesis and characterization of three novel sulfur-doped nanographenes (NGs) (1-3) containing multiple subhelicenes, including carbo[4]helicenes, thieno[4]helicenes, carbo[5]helicenes, and thieno[5]helicenes. Density functional theory calculations reveal that the helicene substructures in 1-3 possess dihedral angles from 15° to 34°. The optical energy gaps of 1-3 are estimated to be 2.67, 2.45, and 2.30 eV, respectively. These three sulfur-doped NGs show enlarged energy gaps compared to those of their pristine carbon analogues.

13.
Nanoscale ; 13(3): 1624-1628, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33443270

RESUMEN

Triangulene and its π-extended homologues constitute non-Kekulé polyradical frameworks with high-spin ground states, and are anticipated to be key components of organic spintronic devices. We report a combined in-solution and on-surface synthesis of the hitherto largest triangulene homologue, [7]triangulene (C78H24), consisting of twenty-eight benzenoid rings fused in a triangular fashion. We employ low-temperature scanning tunneling microscopy to confirm the chemical structure of individual molecules adsorbed on a Cu(111) surface. While neutral [7]triangulene in the gas phase is predicted to have an open-shell septet ground state; our scanning tunneling spectroscopy measurements, in combination with density functional theory calculations, reveal chemisorption of [7]triangulene on Cu(111) together with considerable charge transfer, resulting in a closed-shell state. Furthermore, substantial hybridization between the molecular orbitals of [7]triangulene is observed.

14.
J Am Chem Soc ; 143(5): 2353-2360, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502182

RESUMEN

Defects have been observed in graphene and are expected to play a key role in its optical, electronic, and magnetic properties. However, because most of the studies focused on the structural characterization, the implications of topological defects on the physicochemical properties of graphene remain poorly understood. Here, we demonstrate a bottom-up synthesis of three novel nanographenes (1-3) with well-defined defects in which seven-five-seven (7-5-7)-membered rings were introduced to their sp2 carbon frameworks. From the X-ray crystallographic analysis, compound 1 adopts a nearly planar structure. Compound 2, with an additional five-membered ring compared to 1, possesses a slightly saddle-shaped geometry. Compound 3, which can be regarded as the "head-to-head" fusion of 1 with two bonds, features two saddles connected together. The resultant defective nanographenes 1-3 were well-investigated by UV-vis absorption, cyclic voltammetry, and time-resolved absorption spectra and further corroborated by density functional theory (DFT) calculations. Detailed experimental and theoretical investigations elucidate that these three nanographenes 1-3 exhibit an anti-aromatic character in their ground states and display a high stability under ambient conditions, which contrast with the reported unstable biradicaloid nanographenes that contain heptagons. Our work reported herein offers insights into the understanding of structure-related properties and enables the control of the electronic structures of expanded nanographenes with atomically precise defects.

15.
Adv Mater ; 33(4): e2005416, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33314375

RESUMEN

Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers-semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)-in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2  V-1  s-1 , in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2  V-1  s-1 ). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain.

16.
J Am Chem Soc ; 142(43): 18293-18298, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33078947

RESUMEN

Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V-1 s-1 for photogenerated charge carriers in cGNR.

17.
Polymers (Basel) ; 12(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580475

RESUMEN

Stiff thermosensitive hydrogels (HG) were synthesized by self-crosslinking free radical polymerization of N,N-dimethylacrylamide (DMAA) and N-isopropylacrylamide (NIPAAm), adjusting the degree of swelling by carboxylate-containing sodium acrylate (NaAc) or a 2-oxazoline macromonomer (MM). The formation of hydrogels was possible due to the self-crosslinking property of DMAA when polymerized with peroxodisulfate initiator type. The MM was synthetized by the ring-opening cationic polymerization of 2-methyl-2-oxazoline (MeOxa) and methyl-3-(oxazol-2-yl)-propionate (EsterOxa), and contained a polymerizable styryl endgroup. After ester hydrolysis of EsterOxa units, a carboxylate-containing MM was obtained. The structure of the hydrogels was confirmed by 1H high-resolution (HR)-MAS NMR spectroscopy. Suitable conditions and compositions of the comonomers have been found, which allowed efficient self-crosslinking as well as a thermoresponsive swelling in water. Incorporation of both the polar comonomer and the macromonomer, in small amounts furthermore allowed the adjustment of the degree of swelling. However, the macromonomer was better suited to retain the thermoresponsive behavior of the poly (NIPAAm) due to a phase separation of the tangling polyoxazoline side chains. Thermogravimetric analysis determined that the hydrogels were stable up to ~ 350 °C, and dynamic mechanical analysis characterized a viscoelastic behavior of the hydrogels, properties that are required, for example, for possible use as an actuator material.

18.
Chemistry ; 26(33): 7497-7503, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298000

RESUMEN

Nanographenes (NGs) with tunable electronic and magnetic properties have attracted enormous attention in the realm of carbon-based nanoelectronics. In particular, NGs with biradical character at the ground state are promising building units for molecular spintronics. However, most of the biradicaloids are susceptible to oxidation under ambient conditions and photolytic degradation, which hamper their further applications. Herein, we demonstrated the feasibility of tuning the magnetic properties of zigzag-edged NGs in order to enhance their stability via the controlled Diels-Alder reactions of peri-tetracene (4-PA). The unstable 4-PA (y0 =0.72; half-life, t1/2 =3 h) was transformed into the unprecedented benzo-peri-tetracenes (BPTs) by a one-side Diels-Alder reaction, which featured a biradical character at the ground state (y0 =0.60) and exhibited remarkable stability under ambient conditions for several months. In addition, the fully zigzag-edged circumanthracenes (CAs) were achieved by two-fold or stepwise Diels-Alder reactions of 4-PA, in which the magnetic properties could be controlled by employing the corresponding dienophiles. Our work reported herein opens avenues for the synthesis of novel zigzag-edged NGs with tailor-made magnetic properties.

19.
Angew Chem Int Ed Engl ; 59(14): 5637-5642, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31867754

RESUMEN

Three unprecedented helical nanographenes (1, 2, and 3) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps (2: 1.88 eV; 3: 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis-NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.

20.
Pharmaceutics ; 11(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842344

RESUMEN

In order to evaluate the potential of a technology platform based on hyaluronan copolymers grafted with propargylated ferulate fluorophores (HA-FA-Pg) in the development of drug delivery systems, the propargyl groups of HA-FA-Pg derivatives were employed with oleic acid (OA) or stearic acid (SA) residues across a biocompatible hexa(ethylene glycol) (HEG) spacer. The designed materials (i.e., HA-FA-HEG-OA or HA-FA-HEG-SA) showed clear-cut aggregation features in an aqueous environment, as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), generating nanoaggregate systems. In fact, HA-FA-HEG-OA and HA-FA-HEG-SA derivatives showed the property to create self-assembled cytocompatible nanostructured aggregates in water, thanks to the simultaneous presence of hydrophilic portions in the polymeric backbone, such as hyaluronic acid, and hydrophobic portions in the side chains. Furthermore, the designed materials interact with living cells showing a high degree of cytocompatibility. The potential ability of nanosystems to load pharmacologically active molecules was assessed by the physical entrapment of olanzapine into both polymeric systems. The drug loading evaluation demonstrated that the nanoparticles are able to incorporate a good quantity of olanzapine, as well as improve drug solubility, release profile, and cytocompatibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...