Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal ; 8(5): 754-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598582

RESUMEN

The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.


Asunto(s)
Bovinos/genética , Estro/fisiología , Regulación de la Expresión Génica , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Animales , Encéfalo/fisiología , Bovinos/fisiología , Estradiol/sangre , Estrógenos/sangre , Estro/genética , Femenino , Genómica , Progesterona/sangre , Reproducción/genética , Transducción de Señal
2.
J Dairy Sci ; 96(4): 2583-2595, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23375972

RESUMEN

The expression of estrous (sexually receptive) behavior (EB), a key fertility trait in dairy cows, has been declining over the past few decades both in intensity and duration. Improved knowledge of the genomic factors underlying EB, which is currently lacking, may lead to novel applications to enhance fertility. Our objective was to identify genes and biological processes shared among the bovine anterior pituitary (AP) and four brain areas that act together to regulate EB by investigating networks of coexpressed genes between these tissues. We used a systems biology approach called weighted gene coexpression network analysis for defining gene coexpression networks using gene expression data from the following tissues collected from 14 cows at estrus: AP, dorsal hypothalamus (DH), ventral hypothalamus (VH), amygdala (AM), and hippocampus (HC). Consensus modules of coexpressed genes were identified between the networks for the AM-DH, HC-DH, VH-DH, AP-DH, and AM-HC tissue pairs. The correlation between the module's eigengene (weighted average gene expression profile) and levels of EB exhibited by the experimental cows were tested. Estrous behavior-correlated modules were found enriched for gene ontology terms like glial cell development and regulation of neural projection development as well as for Kyoto Encyclopedia of Genes and Genomes pathway terms related to brain degenerative diseases. General cellular processes like oxidative phosphorylation and ribosome and biosynthetic processes were found enriched in several correlated modules, indicating increased transcription and protein synthesis. Stimulation of ribosomal RNA synthesis is known from rodent studies to be a primary event in the activation of neuronal cells and pathways involved in female reproductive behavior and this precedes the estrogen-driven expansion of dendrites and synapses. Similar processes also operate in cows to affect EB. Hub genes within EB-correlated modules (e.g. NEFL, NDRG2, GAP43, THY1, and TCF7L2, among others) are strong candidates among genes regulating EB expression. The study improved our understanding of the genomic regulation of EB in dairy cows by providing new insights into genes and biological processes shared among the bovine AP and brain areas acting together to regulate EB. The new knowledge could lead to the development of novel management strategies to monitor and improve reproductive performance in dairy cows (for example, biomarkers for estrus detection).


Asunto(s)
Encéfalo/fisiología , Bovinos/genética , Bovinos/fisiología , Estro/fisiología , Redes Reguladoras de Genes/genética , Adenohipófisis/fisiología , Animales , Industria Lechera , Detección del Estro , Femenino , Fertilidad/genética , Fertilidad/fisiología , Expresión Génica , Lactancia/fisiología , Reproducción/genética , Reproducción/fisiología
3.
Animal ; 4(8): 1297-307, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22444649

RESUMEN

Intensive selection for high milk yield in dairy cows has raised production levels substantially but at the cost of reduced fertility, which manifests in different ways including reduced expression of oestrous behaviour. The genomic regulation of oestrous behaviour in bovines remains largely unknown. Here, we aimed to identify and study those genes that were associated with oestrous behaviour among genes expressed in the bovine anterior pituitary either at the start of oestrous cycle or at the mid-cycle (around day 12 of cycle), or regardless of the phase of cycle. Oestrous behaviour was recorded in each of 28 primiparous cows from 30 days in milk onwards till the day of their sacrifice (between 77 and 139 days in milk) and quantified as heat scores. An average heat score value was calculated for each cow from heat scores observed during consecutive oestrous cycles excluding the cycle on the day of sacrifice. A microarray experiment was designed to measure gene expression in the anterior pituitary of these cows, 14 of which were sacrificed at the start of oestrous cycle (day 0) and 14 around day 12 of cycle (day 12). Gene expression was modelled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model on data from day 0 cows alone (analysis 1), day 12 cows alone (analysis 2) and the combined data from day 0 and day 12 cows (analysis 3). Genes whose expression patterns showed significant linear or non-linear relationships with average heat scores were identified in all three analyses (177, 142 and 118 genes, respectively). Gene ontology terms enriched among genes identified in analysis 1 revealed processes associated with expression of oestrous behaviour whereas the terms enriched among genes identified in analysis 2 and 3 were general processes which may facilitate proper expression of oestrous behaviour at the subsequent oestrus. Studying these genes will help to improve our understanding of the genomic regulation of oestrous behaviour, ultimately leading to better management strategies and tools to improve or monitor reproductive performance in bovines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...