Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114019, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551965

RESUMEN

Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.


Asunto(s)
Células Epiteliales , Factores de Transcripción Forkhead , Organoides , Timo , Animales , Organoides/citología , Organoides/metabolismo , Timo/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Diferenciación Celular , Ratones Desnudos , Linfocitos T/citología , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Cell Stem Cell ; 31(2): 227-243.e12, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215738

RESUMEN

The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.


Asunto(s)
Conjuntiva , Células Caliciformes , Humanos , Ratones , Animales , Conjuntiva/metabolismo , Células Caliciformes/metabolismo , Epitelio , Interleucina-13 , Homeostasis , Organoides
3.
Cancer Cell ; 41(12): 2083-2099.e9, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38086335

RESUMEN

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/patología
4.
Science ; 382(6669): 451-458, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883554

RESUMEN

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.


Asunto(s)
Sistemas CRISPR-Cas , Linaje de la Célula , Células Enteroendocrinas , Regulación de la Expresión Génica , Proteínas Represoras , Dedos de Zinc , Humanos , Diferenciación Celular/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Organoides , Adulto , Linaje de la Célula/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
J Vis Exp ; (192)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804367

RESUMEN

The lacrimal gland is an essential organ for ocular surface homeostasis. By producing the aqueous part of the tear film, it protects the eye from desiccation stress and external insults. Little is known about lacrimal gland (patho)physiology because of the lack of adequate in vitro models. Organoid technology has proven itself as a useful experimental platform for multiple organs. Here, we share a protocol to establish and maintain mouse and human lacrimal gland organoids starting from lacrimal gland biopsies. By modifying the culture conditions, we enhance lacrimal gland organoid functionality. Organoid functionality can be probed through a "crying" assay, which involves exposing the lacrimal gland organoids to selected neurotransmitters to trigger tear release in their lumen. We explain how to image and quantify this phenomenon. To investigate the role of genes of interest in lacrimal gland homeostasis, these can be genetically modified. We thoroughly describe how to genetically modify lacrimal gland organoids using base editors-from guide RNA design to organoid clone genotyping. Lastly, we show how to probe the regenerative potential of human lacrimal gland organoids by orthotopic implantation in the mouse. Together, this comprehensive toolset provides resources to use mouse and human lacrimal gland organoids to study lacrimal gland (patho)physiology.


Asunto(s)
Aparato Lagrimal , Humanos , Aparato Lagrimal/cirugía , Lágrimas , Organoides
6.
Cell Stem Cell ; 29(7): 1102-1118.e8, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803228

RESUMEN

The embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage. When exposed to suboptimal inducers, these stem cells fluctuate to form interconvertible subpopulations with reduced self-renewal and facilitated differentiation, resembling peri-implantation cells, known as TR stem cells (TSCs). TESCs have enhanced capacity to form blastoids that implant more efficiently in utero due to inducers maintaining not only local TR proliferation and self-renewal, but also WNT6/7B secretion that stimulates uterine decidualization. Overall, the epiblast maintains sustained growth and decidualization potential of abutting TR cells, while, as known, distancing imposed by the blastocyst cavity differentiates TR cells for uterus adhesion, thus patterning the essential functions of implantation.


Asunto(s)
Implantación del Embrión , Placenta , Animales , Blastocisto , Femenino , Estratos Germinativos , Ratones , Embarazo , Células Madre , Trofoblastos/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916298

RESUMEN

The thyroid maintains systemic homeostasis by regulating serum thyroid hormone concentrations. Here we report the establishment of three-dimensional (3D) organoids from adult thyroid tissue representing murine and human thyroid follicular cells (TFCs). The TFC organoids (TFCOs) harbor the complete machinery of hormone production as visualized by the presence of colloid in the lumen and by the presence of essential transporters and enzymes in the polarized epithelial cells that surround a central lumen. Both the established murine as human thyroid organoids express canonical thyroid markers PAX8 and NKX2.1, while the thyroid hormone precursor thyroglobulin is expressed at comparable levels to tissue. Single-cell RNA sequencing and transmission electron microscopy confirm that TFCOs phenocopy primary thyroid tissue. Thyroid hormones are readily detectable in conditioned medium of human TFCOs. We show clinically relevant responses (increased proliferation and hormone secretion) of human TFCOs toward a panel of Graves' disease patient sera, demonstrating that organoids can model human autoimmune disease.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Enfermedad de Graves/metabolismo , Organoides/metabolismo , Células Epiteliales Tiroideas/fisiología , Animales , Medios de Cultivo , Humanos , Ratones , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Tiroglobulina/genética , Tiroglobulina/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo
8.
EMBO Rep ; 22(12): e52058, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34693619

RESUMEN

Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.


Asunto(s)
Trastornos de la Motilidad Ciliar , Organoides , Cilios , Trastornos de la Motilidad Ciliar/genética , Humanos , Mutación , Fenotipo
9.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33848015

RESUMEN

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Asunto(s)
Nefronas , Células Madre , Diferenciación Celular , Mesodermo , Organogénesis/genética
10.
Cell Stem Cell ; 28(8): 1380-1396.e6, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33852917

RESUMEN

Cervical cancer is a common gynecological malignancy often caused by high-risk human papillomavirus. There is a paucity of human-derived culture systems to study the cervical epithelium and the cancers derived thereof. Here we describe a long-term culturing protocol for ecto- and endocervical epithelia that generates 3D organoids that stably recapitulate the two tissues of origin. As evidenced for HSV-1, organoid-based cervical models may serve to study sexually transmitted infections. Starting from Pap brush material, a small biobank of tumoroids derived from affected individuals was established that retained the causative human papillomavirus (HPV) genomes. One of these uniquely carried the poorly characterized HPV30 subtype, implying a potential role in carcinogenesis. The tumoroids displayed differential responses to common chemotherapeutic agents and grew as xenografts in mice. This study describes an experimental platform for cervical (cancer) research and for future personalized medicine approaches.


Asunto(s)
Neoplasias del Cuello Uterino , Animales , Carcinogénesis , Epitelio , Femenino , Humanos , Ratones , Organoides , Papillomaviridae
11.
Cell Stem Cell ; 28(7): 1221-1232.e7, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33730555

RESUMEN

The lacrimal gland is essential for lubrication and protection of the eye. Disruption of lacrimal fluid production, composition, or release results in dry eye, causing discomfort and damage to the ocular surface. Here, we describe the establishment of long-term 3D organoid culture conditions for mouse and human lacrimal gland. Organoids can be expanded over multiple months and recapitulate morphological and transcriptional features of lacrimal ducts. CRISPR-Cas9-mediated genome editing reveals the master regulator for eye development Pax6 to be required for differentiation of adult lacrimal gland cells. We address cellular heterogeneity of the lacrimal gland by providing a single-cell atlas of human lacrimal gland tissue and organoids. Finally, human lacrimal gland organoids phenocopy the process of tear secretion in response to neurotransmitters and can engraft and produce mature tear products upon orthotopic transplantation in mouse. Together, this study provides an experimental platform to study the (patho-)physiology of the lacrimal gland.


Asunto(s)
Síndromes de Ojo Seco , Aparato Lagrimal , Animales , Humanos , Ratones , Organoides , Células Madre , Lágrimas
12.
Endocr Relat Cancer ; 28(1): 65-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33156815

RESUMEN

Pheochromocytomas and paragangliomas (PPGLs) caused by mutations in the B-subunit of the succinate dehydrogenase (SDHB) have the highest metastatic rate among PPGLs, and effective systemic therapy is lacking. To unravel underlying pathogenic mechanisms, and to evaluate therapeutic strategies, suitable in vivo models are needed. The available systemic Sdhb knock-out mice cannot model the human PPGL phenotype: heterozygous Sdhb mice lack a disease phenotype, and homozygous Sdhb mice are embryonically lethal. Using CRISPR/cas9 technology, we introduced a protein-truncating germline lesion into the zebrafish sdhb gene. Heterozygous sdhb mutants were viable and displayed no obvious morphological or developmental defects. Homozygous sdhb larvae were viable, but exhibited a decreased lifespan. Morphological analysis revealed incompletely or non-inflated swim bladders in homozygous sdhb mutants at day 6. Although no differences in number and ultrastructure of the mitochondria were observed. Clear defects in energy metabolism and swimming behavior were observed in homozygous sdhb mutant larvae. Functional and metabolomic analyses revealed decreased mitochondrial complex 2 activity and significant succinate accumulation in the homozygous sdhb mutant larvae, mimicking the metabolic effects observed in SDHB-associated PPGLs. This is the first study to present a vertebrate animal model that mimics metabolic effects of SDHB-associated PPGLs. This model will be useful in unraveling pathomechanisms behind SDHB-associated PPGLs. We can now study the metabolic effects of sdhb disruption during different developmental stages and develop screening assays to identify novel therapeutic targets in vivo. Besides oncological syndromes, our model might also be useful for pediatric mitochondrial disease caused by loss of the SDHB gene.


Asunto(s)
Larva/metabolismo , Paraganglioma/genética , Succinato Deshidrogenasa/metabolismo , Animales , Humanos , Pez Cebra
13.
Nat Commun ; 11(1): 2660, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461556

RESUMEN

High-grade serous ovarian cancer (HG-SOC)-often referred to as a "silent killer"-is the most lethal gynecological malignancy. The fallopian tube (murine oviduct) and ovarian surface epithelium (OSE) are considered the main candidate tissues of origin of this cancer. However, the relative contribution of each tissue to HG-SOC is not yet clear. Here, we establish organoid-based tumor progression models of HG-SOC from murine oviductal and OSE tissues. We use CRISPR-Cas9 genome editing to introduce mutations into genes commonly found mutated in HG-SOC, such as Trp53, Brca1, Nf1 and Pten. Our results support the dual origin hypothesis of HG-SOC, as we demonstrate that both epithelia can give rise to ovarian tumors with high-grade pathology. However, the mutated oviductal organoids expand much faster in vitro and more readily form malignant tumors upon transplantation. Furthermore, in vitro drug testing reveals distinct lineage-dependent sensitivities to the common drugs used to treat HG-SOC in patients.


Asunto(s)
Sistemas CRISPR-Cas/genética , Organoides , Neoplasias Ováricas/etiología , Animales , Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína 9 Asociada a CRISPR , Epitelio/patología , Trompas Uterinas/patología , Femenino , Edición Génica/métodos , Ratones , Mutación , Neurofibromatosis 1/genética , Técnicas de Cultivo de Órganos/métodos , Organoides/efectos de los fármacos , Organoides/fisiopatología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ovario/patología , Fosfohidrolasa PTEN/genética , Proteína p53 Supresora de Tumor/genética
14.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978343

RESUMEN

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/crecimiento & desarrollo , Venenos de Serpiente/metabolismo , Células Madre Adultas/metabolismo , Animales , Serpientes de Coral/metabolismo , Perfilación de la Expresión Génica/métodos , Organoides/metabolismo , Glándulas Salivales/metabolismo , Venenos de Serpiente/genética , Serpientes/genética , Serpientes/crecimiento & desarrollo , Células Madre/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
15.
Proc Natl Acad Sci U S A ; 116(52): 26599-26605, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843916

RESUMEN

Cycling intestinal Lgr5+ stem cells are intermingled with their terminally differentiated Paneth cell daughters at crypt bottoms. Paneth cells provide multiple secreted (e.g., Wnt, EGF) as well as surface-bound (Notch ligand) niche signals. Here we show that ablation of Paneth cells in mice, using a diphtheria toxin receptor gene inserted into the P-lysozyme locus, does not affect the maintenance of Lgr5+ stem cells. Flow cytometry, single-cell sequencing, and histological analysis showed that the ablated Paneth cells are replaced by enteroendocrine and tuft cells. As these cells physically occupy Paneth cell positions between Lgr5 stem cells, they serve as an alternative source of Notch signals, which are essential for Lgr5+ stem cell maintenance. Our combined in vivo results underscore the adaptive flexibility of the intestine in maintaining normal tissue homeostasis.

16.
Cancer Discov ; 9(7): 852-871, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31053628

RESUMEN

Previous studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)-derived organoid lines was established. This panel recapitulates genetic and molecular characteristics previously described for HNSCC. Organoids retain their tumorigenic potential upon xenotransplantation. We observe differential responses to a panel of drugs including cisplatin, carboplatin, cetuximab, and radiotherapy in vitro. Additionally, drug screens reveal selective sensitivity to targeted drugs that are not normally used in the treatment of patients with HNSCC. These observations may inspire a personalized approach to the management of HNSCC and expand the repertoire of HNSCC drugs. SIGNIFICANCE: This work describes the culture of organoids derived from HNSCC and corresponding normal epithelium. These tumoroids recapitulate the disease genetically, histologically, and functionally. In vitro drug screening of tumoroids reveals responses to therapies both currently used in the treatment of HNSCC and those not (yet) used in clinical practice.See related commentary by Hill and D'Andrea, p. 828.This article is highlighted in the In This Issue feature, p. 813.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Mucosa Bucal/patología , Organoides/patología , Medicina de Precisión/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Animales , Carboplatino/administración & dosificación , Cetuximab/administración & dosificación , Quimioradioterapia , Cisplatino/administración & dosificación , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/efectos de la radiación , Organoides/efectos de los fármacos , Organoides/efectos de la radiación , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nat Med ; 25(5): 838-849, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31011202

RESUMEN

Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids. Utilizing this protocol, we have established 56 organoid lines from 32 patients, representing all main subtypes of OC. OC organoids recapitulate histological and genomic features of the pertinent lesion from which they were derived, illustrating intra- and interpatient heterogeneity, and can be genetically modified. We show that OC organoids can be used for drug-screening assays and capture different tumor subtype responses to the gold standard platinum-based chemotherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, this demonstrates their potential application for research and personalized medicine.


Asunto(s)
Organoides/patología , Neoplasias Ováricas/patología , Adulto , Anciano , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Genómica , Xenoinjertos , Humanos , Ratones SCID , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Medicina de Precisión
18.
Proc Natl Acad Sci U S A ; 116(10): 4567-4574, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787188

RESUMEN

Bladder cancer is a common malignancy that has a relatively poor outcome. Lack of culture models for the bladder epithelium (urothelium) hampers the development of new therapeutics. Here we present a long-term culture system of the normal mouse urothelium and an efficient culture system of human bladder cancer cells. These so-called bladder (cancer) organoids consist of 3D structures of epithelial cells that recapitulate many aspects of the urothelium. Mouse bladder organoids can be cultured efficiently and genetically manipulated with ease, which was exemplified by creating genetic knockouts in the tumor suppressors Trp53 and Stag2. Human bladder cancer organoids can be derived efficiently from both resected tumors and biopsies and cultured and passaged for prolonged periods. We used this feature of human bladder organoids to create a living biobank consisting of bladder cancer organoids derived from 53 patients. Resulting organoids were characterized histologically and functionally. Organoid lines contained both basal and luminal bladder cancer subtypes based on immunohistochemistry and gene expression analysis. Common bladder cancer mutations like TP53 and FGFR3 were found in organoids in the biobank. Finally, we performed limited drug testing on organoids in the bladder cancer biobank.


Asunto(s)
Organoides/patología , Neoplasias de la Vejiga Urinaria/patología , Animales , Ratones , Medicina de Precisión
19.
EMBO J ; 38(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30643021

RESUMEN

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Fibrosis Quística/patología , Células Epiteliales/patología , Técnicas de Cultivo de Órganos/métodos , Organoides/patología , Infecciones por Virus Sincitial Respiratorio/patología , Sistema Respiratorio/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Cultivadas , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Células Epiteliales/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/aislamiento & purificación , Sistema Respiratorio/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell ; 175(6): 1591-1606.e19, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500538

RESUMEN

The mammalian liver possesses a remarkable regenerative ability. Two modes of damage response have been described: (1) The "oval cell" response emanates from the biliary tree when all hepatocytes are affected by chronic liver disease. (2) A massive, proliferative response of mature hepatocytes occurs upon acute liver damage such as partial hepatectomy (PHx). While the oval cell response has been captured in vitro by growing organoids from cholangiocytes, the hepatocyte proliferative response has not been recapitulated in culture. Here, we describe the establishment of a long-term 3D organoid culture system for mouse and human primary hepatocytes. Organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological, functional and gene expression features. Transcriptional profiles of the organoids resemble those of proliferating hepatocytes after PHx. Human hepatocyte organoids proliferate extensively after engraftment into mice and thus recapitulate the proliferative damage-response of hepatocytes.


Asunto(s)
Proliferación Celular , Hepatocitos/metabolismo , Organoides/metabolismo , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Hepatocitos/citología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Organoides/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA