Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(51): 56908-56923, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33314916

RESUMEN

Encapsulation devices are an emerging barrier technology designed to prevent the immunorejection of replacement cells in regenerative therapies for intractable diseases. However, traditional polymers used in current devices are poor substrates for cell attachment and induce fibrosis upon implantation, impacting long-term therapeutic cell viability. Bioactivation of polymer surfaces improves local host responses to materials, and here we make the first step toward demonstrating the utility of this approach to improve cell survival within encapsulation implants. Using therapeutic islet cells as an exemplar cell therapy, we show that internal surface coatings improve islet cell attachment and viability, while distinct external coatings modulate local foreign body responses. Using plasma surface functionalization (plasma immersion ion implantation (PIII)), we employ hollow fiber semiporous poly(ether sulfone) (PES) encapsulation membranes and coat the internal surfaces with the extracellular matrix protein fibronectin (FN) to enhance islet cell attachment. Separately, the external fiber surface is coated with the anti-inflammatory cytokine interleukin-4 (IL-4) to polarize local macrophages to an M2 (anti-inflammatory) phenotype, muting the fibrotic response. To demonstrate the power of our approach, bioluminescent murine islet cells were loaded into dual FN/IL-4-coated fibers and evaluated in a mouse back model for 14 days. Dual FN/IL-4 fibers showed striking reductions in immune cell accumulation and elevated levels of the M2 macrophage phenotype, consistent with the suppression of fibrotic encapsulation and enhanced angiogenesis. These changes led to markedly enhanced islet cell survival and importantly to functional integration of the implant with the host vasculature. Dual FN/IL-4 surface coatings drive multifaceted improvements in islet cell survival and function, with significant implications for improving clinical translation of therapeutic cell-containing macroencapsulation implants.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Fibrosis/prevención & control , Islotes Pancreáticos/metabolismo , Polímeros/química , Sulfonas/química , Animales , Adhesión Celular/efectos de los fármacos , Fibronectinas/química , Fibronectinas/farmacología , Luciferina de Luciérnaga/farmacología , Interleucina-4/química , Interleucina-4/farmacología , Islotes Pancreáticos/diagnóstico por imagen , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos/instrumentación , Trasplante de Islotes Pancreáticos/métodos , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/efectos de los fármacos , Imagen Óptica , Prótesis e Implantes , Células RAW 264.7
2.
ACS Appl Mater Interfaces ; 12(28): 32163-32174, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32531163

RESUMEN

Hollow-fiber capillary bundles are widely used in the production of medical devices for blood oxygenation and purification purposes such as in cardiopulmonary bypass, hemodialysis, and hemofiltration, but the blood interfacing inner surfaces of these capillaries provide poor hemocompatibility. Here, we present a novel method of packed-bed plasma ion implantation (PBPII) for the modification of the inner surfaces of polymeric hollow-fiber bundles enclosed in a cassette. The method is simple and can be performed on an intact hollow-fiber bundle cassette by the placement of a hollow cylindrical electrode, connected to a negative high-voltage pulse generator, around the cassette. The method does not require the insertion of electrodes inside the capillaries or the cassette. Nitrogen gas is fed into the capillaries inside the cassette by connecting the inlet of the cassette to a gas source. Upon the application of negative high-voltage bias pulses to the electrode, plasma is ignited inside the cassette, achieving the surface modification of both the internal and external surfaces of the capillaries. Fourier transform infrared-attenuated total reflectance spectroscopy of the PBPII-treated capillaries revealed the formation of aromatic C═C bonds, indicating the progressive carbonization of the capillary surfaces. The PBPII treatment was found to be uniform along the capillaries and independent of the radial position in the cassette. Atomic force microscopy of cross sections through the capillaries revealed that the increased stiffness associated with the carbonized layer on the inner surface of the PBPII-treated capillary has a depth (∼40 nm) consistent with that expected for ions accelerated by the applied bias voltage. The modified internal surfaces of the capillary bundle showed a greatly increased wettability and could be biofunctionalized by covalently immobilizing protein directly from the buffer solution. The direct, reagent-free protein immobilization was demonstrated using tropoelastin as an example protein. Covalent binding of the protein was confirmed by its resistance to removal by hot sodium dodecyl sulfate detergent washing, which is known to disrupt physical binding.


Asunto(s)
Polímeros/química , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Tropoelastina/química , Humectabilidad
3.
Macromol Biosci ; 19(3): e1800233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30253047

RESUMEN

Conventional wound therapy utilizes wound coverage to prevent infection, trauma, and fluid and thermal loss. However, this approach is often inadequate for large and/or chronic wounds, which require active intervention via therapeutic cells to promote healing. To address this need, a patch which delivers multipotent adult progenitor cells (MAPCs) is developed. Medical-grade polyurethane (PU) films are modified using plasma immersion ion implantation (PIII), which creates a radical-rich layer capable of rapidly and covalently attaching biomolecules. It is demonstrated that a short treatment duration of 400 s maximizes surface activation and wettability, minimizes reduction in gas permeability, and preserves the hydrolytic resistance of the PU film. The reactivity of PIII-treated PU is utilized to immobilize the extracellular matrix protein tropoelastin in a functional conformation that stably withstands medical-grade ethylene oxide sterilization. The PIII-treated tropoelastin-functionalized patch significantly promotes MAPC adhesion and proliferation over standard PU, while fully maintaining cell phenotype. Topical application of the MAPC-seeded patch transfers cells to a human skin model, while undelivered MAPCs repopulate the patch surface for subsequent cell transfer. The potential of this new wound patch as a reservoir for the sustained delivery of therapeutic MAPCs and cell-secreted factors for large and/or non-healing wounds is indicated in the findings.


Asunto(s)
Células Madre Adultas/trasplante , Células Inmovilizadas/trasplante , Materiales Biocompatibles Revestidos/química , Membranas Artificiales , Células Madre Multipotentes/trasplante , Piel/metabolismo , Trasplante de Células Madre , Tropoelastina/química , Adulto , Células Madre Adultas/metabolismo , Células Inmovilizadas/metabolismo , Humanos , Células Madre Multipotentes/metabolismo , Poliuretanos/química
4.
Cell Rep ; 24(11): 2819-2826.e3, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208309

RESUMEN

The extracellular matrix (ECM) critically affects ß cell functions via integrin activation. But whether these ECM actions drive the spatial organization of ß cells, as they do in epithelial cells, is unknown. Here, we show that within islets of Langerhans, focal adhesion activation in ß cells occurs exclusively where they contact the capillary ECM (vascular face). In cultured ß cells, 3D mapping shows enriched insulin granule fusion where the cells contact ECM-coated coverslips, which depends on ß1 integrin receptor activation. Culture on micro-contact printed stripes of E-cadherin and fibronectin shows that ß cell contact at the fibronectin stripe selectively activates focal adhesions and enriches exocytic machinery and insulin granule fusion. Culture of cells in high glucose, as a model of glucotoxicity, abolishes granule targeting. We conclude that local integrin activation targets insulin secretion to the islet capillaries. This mechanism might be important for islet function and may change in disease.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Cadherinas/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Exocitosis/fisiología , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Insulina/metabolismo , Secreción de Insulina/fisiología , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
5.
J Mater Sci Mater Med ; 29(1): 5, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29243087

RESUMEN

Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 1014-2 × 1016 ions/cm2. The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, gel fraction formation and wettability were investigated. As in the case of a number of previously studied polymers, oxidation and hydrophobic recovery of the PIII treated PCL follow second order kinetics. CAPA 6250, which has the lowest molecular weight and the highest degree of crystallinity of the untreated PCL films studied, has the highest carbonization of the modified layer after PIII treatment. Untreated medical grade PCL films, mPCL PC12 (Perstorp) and mPCL OsteoporeTM have similar chemical structures and crystallinity. Accordingly, the chemical and structural transformations caused by PIII treatment and post-treatment oxidation are almost identical for these two polymers. In general, PIII treatment destroys the nano-scale lamellar structure and results in a reduction of PCL crystallinity. Examination after washing PIII treated PCL films in toluene confirmed our hypothesis that cross-linking due to PIII treatment is significantly higher in semi-crystalline PCL as compared with amorphous polymers.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Iones/química , Poliésteres/química , Propiedades de Superficie , Carbono/química , Cristalización , Ensayo de Materiales , Microscopía de Fuerza Atómica , Peso Molecular , Oxígeno/química , Plasma , Polímeros/química , Proteínas/química , Refractometría , Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Humectabilidad , Difracción de Rayos X
6.
J R Soc Interface ; 14(127)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28179545

RESUMEN

Biomimetic materials which integrate with surrounding tissues and regulate new tissue formation are attractive for tissue engineering and regenerative medicine. Plasma immersion ion-implanted (PIII) polyethersulfone (PES) provides an excellent platform for the irreversible immobilization of bioactive proteins and peptides. PIII treatment significantly improves PES wettability and results in the formation of acidic groups on the PES surface, with the highest concentration observed at 40-80 s of PIII treatment. The elastomeric protein tropoelastin can be stably adhered to PIII-treated PES in a cell-interactive conformation by tailoring the pH and salt levels of the protein-surface association conditions. Tropoelastin-coated PIII-treated PES surfaces are resistant to molecular fouling, and actively promote high levels of fibroblast adhesion and proliferation while maintaining cell morphology. Tropoelastin, unlike other extracellular matrix proteins such as fibronectin, uniquely retains full bioactivity even after medical-grade ethylene oxide sterilization. This dual approach of PIII treatment and tropoelastin cloaking allows for the stable, robust functionalization of clinically used polymer materials for directed cellular interactions.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Fibroblastos/metabolismo , Ensayo de Materiales , Polímeros/química , Esterilización , Sulfonas/química , Tropoelastina/química , Adhesión Celular , Línea Celular , Fibroblastos/citología , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar
7.
Biomaterials ; 122: 72-82, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28110114

RESUMEN

The robust repair of large wounds and tissue defects relies on blood flow. This vascularization is the major challenge faced by tissue engineering on the path to forming thick, implantable tissue constructs. Without this vasculature, oxygen and nutrients cannot reach the cells located far from host blood vessels. To make viable constructs, tissue engineering takes advantage of the mechanical properties of synthetic materials, while combining them with ECM proteins to create a natural environment for the tissue-specific cells. Tropoelastin, the precursor of the elastin, is the ECM protein responsible for elasticity in diverse tissues, including robust blood vessels. Here, we seeded endothelial cells with supporting cells on PLLA/PLGA scaffolds treated with tropoelastin, and examined the morphology, expansion and maturity of the newly formed vessels. Our results demonstrate that the treated scaffolds elicit a more expanded, complex and developed vascularization in comparison to the untreated group. Implantation of tropoelastin-treated scaffolds into mouse abdominal muscle resulted in enhanced perfusion of the penetrating vasculature and improved integration. This study points to the great potential of these combined materials in promoting the vascularization of implanted engineered constructs, which can be further exploited in the fabrication of clinically relevant engineered tissues.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/citología , Ácido Láctico/química , Neovascularización Fisiológica/fisiología , Poliésteres/química , Ácido Poliglicólico/química , Andamios del Tejido , Tropoelastina/química , Animales , Vasos Sanguíneos/citología , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Células Endoteliales/fisiología , Células Endoteliales/trasplante , Matriz Extracelular/química , Femenino , Humanos , Mecanotransducción Celular/fisiología , Ratones , Ratones Desnudos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Prótesis e Implantes , Ingeniería de Tejidos/instrumentación
8.
Cell Mol Life Sci ; 71(19): 3841-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24623559

RESUMEN

To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Superficie/metabolismo , Cemento de Policarboxilato/química , Animales , Anticuerpos/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteína-1 Reguladora de Fusión/metabolismo , Integrina alfa5/metabolismo , Iones/química , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-kit/metabolismo , Tetraspanina 29/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...