RESUMEN
Chimeric antigen receptor (CAR) T-cells directed against CD19 have drastically altered outcomes for children with relapsed and refractory acute lymphoblastic leukemia (r/r ALL). Pediatric patients with r/r ALL treated with CAR-T are at increased risk of both cytokine release syndrome (CRS) and sepsis. We sought to investigate the biologic differences between CRS and sepsis and to develop predictive models which could accurately differentiate CRS from sepsis at the time of critical illness. We identified 23 different cytokines that were significantly different between patients with sepsis and CRS. Using elastic net prediction modeling and tree classification, we identified cytokines that were able to classify subjects as having CRS or sepsis accurately. A markedly elevated interferon γ (IFNγ) or a mildly elevated IFNγ in combination with a low IL1ß were associated with CRS. A normal to mildly elevated IFNγ in combination with an elevated IL1ß was associated with sepsis. This combination of IFNγ and IL1ß was able to categorize subjects as having CRS or sepsis with 97% accuracy. As CAR-T therapies become more common, these data provide important novel information to better manage potential associated toxicities.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Sepsis , Niño , Enfermedad Crítica , Síndrome de Liberación de Citoquinas , Humanos , Receptores de Antígenos de Linfocitos T , Sepsis/diagnósticoRESUMEN
OBJECTIVES: Systemic endothelial activation may contribute to sepsis-associated organ injury, including acute respiratory distress syndrome. We hypothesized that children with extrapulmonary sepsis with versus without acute respiratory distress syndrome would have plasma biomarkers indicative of increased endothelial activation and that persistent biomarker changes would be associated with poor outcome. DESIGN: Observational cohort. SETTING: Academic PICU. PATIENTS: Patients less than 18 years old with sepsis from extrapulmonary infection with (n = 46) or without (n = 54) acute respiratory distress syndrome and noninfected controls (n = 19). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Endothelial (angiopoietin-1, angiopoietin-2, tyrosine kinase with immunoglobulin-like loop epidermal growth factor homology domain 2, vascular endothelial growth factor, soluble fms-like tyrosine kinase, von Willebrand factor, E-selectin, intercellular adhesion molecule, vascular cell adhesion molecule, thrombomodulin) and inflammatory biomarkers (C-reactive protein, interleukin-6, and interleukin-8) were measured from peripheral plasma collected within 3 days (time 1) of sepsis recognition and at 3-6 days (time 2) and 7-14 days (time 3). Time 1 biomarkers and longitudinal measurements were compared for sepsis patients with versus without acute respiratory distress syndrome and in relation to complicated course, defined as greater than or equal to two organ dysfunctions at day 7 or death by day 28. Angiopoietin-2, angiopoietin-2/angiopoietin-1 ratio, tyrosine kinase with immunoglobulin-like loop epidermal growth factor homology domain 2, vascular endothelial growth factor, von Willebrand factor, E-selectin, intercellular adhesion molecule, vascular cell adhesion molecule, thrombomodulin, endocan, C-reactive protein, interleukin-6, and interleukin-8 were different between sepsis and noninfected control patients at time 1. Among patients with sepsis, those with acute respiratory distress syndrome had higher angiopoietin-2/angiopoietin-1 ratio, vascular endothelial growth factor, vascular cell adhesion molecule, thrombomodulin, endocan, interleukin-6, and interleukin-8 than those without acute respiratory distress syndrome (all p < 0.003). Angiopoietin-2 and angiopoietin-2/angiopoietin-1 ratio remained higher in sepsis with versus without acute respiratory distress syndrome after multivariable analyses. Time 1 measures of angiopoietin-2, angiopoietin-2/-1 ratio, von Willebrand factor, and endocan were indicative of complicated course in all sepsis patients (all area under the receiver operating curve ≥ 0.80). In sepsis without acute respiratory distress syndrome, soluble fms-like tyrosine kinase decreased more quickly and von Willebrand factor and thrombomodulin decreased more slowly in those with complicated course. CONCLUSIONS: Children with extrapulmonary sepsis with acute respiratory distress syndrome had plasma biomarkers indicative of greater systemic endothelial activation than those without acute respiratory distress syndrome. Several endothelial biomarkers measured near sepsis recognition were associated with complicated course, whereas longitudinal biomarker changes yielded prognostic information only in those without sepsis-associated acute respiratory distress syndrome.