Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Transl Med ; 11(9): 309, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37404988

RESUMEN

Background: Ischemic stroke becomes a major cause of death and disability. It can develop due to intravascular or cardiac thromboemboli. Animal models that reflect diverse stroke mechanisms remain under development. Using photochemical thrombosis, we developed a feasible zebrafish model according to the thrombus location (intracerebral vs. intracardiac). We validated the model using real-time imaging and thrombolytic agent. Methods: We used transgenic zebrafish larvae (flk:gfp), which express specific fluorescence in endothelial cells. We injected Rose Bengal, a photosensitizer as a mixture of photosensitizer, and a fluorescent agent into the cardinal vein of the larvae. We then evaluated real-time thrombosis in vivo by inducing thrombosis through exposure to a confocal laser (560 nm) and staining the blood flow (RITC-dextran). We validated intracerebral and intracardiac thrombotic models with checking the activity of tissue plasminogen activator (tPA). Results: The photochemical agent induced the formation of intracerebral thrombi in transgenic zebrafish. Real-time imaging techniques confirmed the formation of the thrombi. The damage and apoptosis of the vessel's endothelial cells were seen in the in vivo model. An intracardiac thrombosis model was developed by the same method using photothrombosis, and the model was validated through thrombolysis by tPA. Conclusions: We developed and validated two zebrafish thrombosis models that are readily available, cost-effective, and intuitive for assessing the efficacy of thrombolytic agents. These models can be used for a broad spectrum of future studies, such as screening and efficacy assessment of new antithrombotic agents.

2.
Anim Cells Syst (Seoul) ; 27(1): 112-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089626

RESUMEN

Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 µg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of lhx1a, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-ß1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.

3.
Int J Radiat Biol ; 99(5): 845-852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36318746

RESUMEN

PURPOSE: The intestine is a dose-limiting organ in the treatment of intra-abdominal cancer. We previously reported that the extract of mistletoe parasites on Quercus had a more potent radioprotective effect than amifostine in reducing the developmental toxicities of zebrafish embryos. In this study, radioprotection against intestinal toxicity was investigated in adult zebrafish. METHODS: Wild-type adult AB zebrafish were exposed to 45-50 Gy of photon beam irradiation and/or treated with mistletoe extract orally 1 h before. The main endpoints of the study were survival and degree of deformation of the intestinal villi. RESULTS: The median follow-up period was 10 d post-irradiation (range: 7-11 d). A total of 105 zebrafish were used, including 42 in the radiation alone, 42 in the radiation and mistletoe arms, and 21 control subjects (mistletoe alone, mock-irradiated arm). The rate of both significant deformity and death was 53% in the radiation-alone arm, whereas the corresponding rate was 30% in the radiation and mistletoe arms. Significant deformity-free survival rates at 10 d post-irradiation in the radiation alone, and radiation and mistletoe arms were 44.7% (95% confidence interval [CI]:20-54.3) and 68.4% (95% CI:53.8-86.8), respectively (p=.046). The radiation and mistletoe arms showed decreased expression of two of three inflammatory genes (IL-1ß and IL-6) compared to the radiation alone group (p<.05). CONCLUSION: The radioprotective effect against intestinal toxicity was successfully shown in an adult zebrafish model. This result suggests the possibility of clinical use of mistletoe extract for the treatment of abdominal cancers.


Asunto(s)
Amifostina , Muérdago , Protectores contra Radiación , Animales , Pez Cebra , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Intestinos , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico
4.
Lasers Surg Med ; 54(2): 281-288, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34298588

RESUMEN

BACKGROUND AND OBJECTIVES: Lasers are known to be the most effective treatment modality for pigmentary skin diseases. However, melanocytes and melanin pigment often recur or leave post-inflammatory hyperpigmentation after the laser procedure. Studies have reported on the role of progenitor cells in pigment cell regeneration, which can be constantly replenished through mitosis. However, the response of unpigmented melanocyte progenitor cells to laser treatment is poorly understood. In this study, we used adult zebrafish skin as the melanocyte regenerative system and examined the response of melanocyte progenitor cells to laser photothermolysis. MATERIALS AND METHODS: The two groups of adult zebrafish were irradiated with 1064 nm wavelength laser system of Q-switched neodymium:yttrium-aluminum-garnet (Nd:YAG) laser with 0.3 or 0.7 J·cm-2 . We compared the regeneration of pigment at different energy levels by measuring new melanocyte counts and pigment area. We traced and quantitatively compared the melanocyte lineage cells by immunohistochemical staining using specific markers such as sox10, mitfa, and dct during the regeneration process. Three repetitive laser ablations were also held to test the postinflammatory hyperpigmentation. RESULTS: After the laser ablation of melanocytes, most of the new melanocytes appeared between Days 5 and 10. In high-energy irradiation of 0.7 J·cm-2 , the unpigmented mitfa-expressing cells showed significant decrease (p < 0.05) and showed delay in the differentiation process of melanocyte lineage cells. After repeated laser irradiation, hyperpigmentation did not appear and the final recovery ratio of the pigmented area was 87.5% and 75.3% at the 0.3 and 0.7 J·cm-2 energy levels, respectively. CONCLUSION: We suggest that laser treatment overcoming the recurrence should be planned based on the adequate energy level targeting the melanocyte progenitor cells. High-energy irradiation may induce apoptosis of progenitor cells and delay their process of differentiation. Short-term repetitive sessions of laser therapy can reduce the pigmentation in the long-term observation.


Asunto(s)
Hiperpigmentación , Láseres de Estado Sólido , Terapia por Luz de Baja Intensidad , Animales , Hiperpigmentación/etiología , Hiperpigmentación/cirugía , Láseres de Estado Sólido/uso terapéutico , Melanocitos , Pigmentación , Células Madre , Pez Cebra
5.
Anim Cells Syst (Seoul) ; 25(5): 264-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745433

RESUMEN

Constipation is a common disease that reduces life quality. Drugs of various mechanisms are being developed to resolve this affliction. Intestinal motility can be easily monitored in zebrafish, and so we selected this organism to develop a constipation model to measure drug-induced prokinetic effects. In this study, intestinal motility was monitored in zebrafish by tracking intestinal transit using fluorescence, after which an opioid-induced constipation model was established using loperamide. We then evaluated the prokinetic effect of diatrizoate meglumine (Gastrografin®), which has been empirically used to treat post-operative ileus or adhesive small bowel obstructions. Diatrizoate meglumine was effective in promoting bowel movements in an opioid-induced zebrafish constipation model and its prokinetic effect was associated with an increased expression of interstitial cells of Cajal (ICC) markers. Therefore, the loperamide-induced zebrafish constipation model developed herein is a promising tool to evaluate novel constipation therapies.

6.
Biochem Biophys Res Commun ; 559: 155-160, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33940387

RESUMEN

BACKGROUND: To investigate the efficacy of a novel experimental model for exploring visual function using a contrast-optomotor response (C-OMR) assay made by applying the contrast sensitivity test to the OMR assay in zebrafish. METHODS: Zebrafish larvae were treated with 0 (control), 5, 10, or 15 µM gentamicin and digoxin for 24 h at four days post-fertilization (dpf). Zebrafish larvae were assessed using the C-OMR assay with graded contrast gray-white stripes at 5 dpf, and the results were expressed as the percentage of larvae that finished swimming for 30 s (n = 20 per each group). The same C-OMR assay was repeated four times using different larvae. RESULTS: The percentage of larvae that finished swimming within 30 s was significantly reduced in larvae treated with 5, 10, and 15 µM gentamicin and 10 and 15 µM digoxin as compared to the Control groups. The C-OMR assay could distinguish that the decrease in visual function was different depending on the concentration of gentamicin and digoxin (5, 10, and 15 µM), whereas the OMR test with one contrast gray-white stripe could not. CONCLUSIONS: The method of analyzing zebrafish OMR using graded contrast gray-white stripes is more sensitive than the OMR assay alone and may be more useful for assessing the drug toxicity and eye-related diseases to improve the understanding of drug-induced ocular side effects in the clinic.


Asunto(s)
Antibacterianos/efectos adversos , Digoxina/efectos adversos , Inhibidores Enzimáticos/efectos adversos , Gentamicinas/efectos adversos , Neuropatía Óptica Tóxica/etiología , Pez Cebra , Animales , Modelos Animales de Enfermedad , Neuropatía Óptica Tóxica/diagnóstico , Pruebas de Visión , Visión Ocular , Pez Cebra/fisiología
7.
Neurotoxicology ; 78: 134-142, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169463

RESUMEN

Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 µM NM and 5, 10, 20 µM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 µM NM also caused muscle damage. Locomotor behavior was decreased in the 125 µM NM-exposed group compared to the group exposed to GM. Furthermore, 125 µM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.


Asunto(s)
Aminoglicósidos/toxicidad , Conducta Animal/efectos de los fármacos , Sistema de la Línea Lateral/efectos de los fármacos , Músculos/efectos de los fármacos , Animales , Femenino , Sistema de la Línea Lateral/patología , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculos/patología , Reflejo de Sobresalto/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Natación , Pez Cebra
8.
Int J Pediatr Otorhinolaryngol ; 126: 109611, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31374386

RESUMEN

OBJECTIVES: Particulate matter (PM) exposure has become one of the most serious problems. The aim of the present study was to evaluate the hair cell damage and possible developmental toxicity caused by PM2.5 exposure using a zebrafish model. METHODS: Zebrafish embryos were exposed to various concentrations of PM2.5. Developmental toxicity was evaluated based on general morphology score (GMS) system and Panzica-Kelly score, and by measurement of body length and heart rate. To evaluate hair cell damage, the average number of total hair cells within four neuromasts exposed to various concentrations of PM2.5 was compared with that of the control group. RESULTS: Morphological abnormalities evaluated by the GMS system and Panzica-Kelly score were rare and body length tended to be shorter in the PM2.5-exposed groups. Heart rate decreased significantly in the PM2.5-exposed group. Additionally, significant hair cell damage was observed after PM2.5 exposure. It was dose-dependent and more severe after a longer period exposure (10 dpf). CONCLUSIONS: In zebrafish embryos, exposure of PM2.5 in the early stages of life decreased heart rate and caused significant hair cell damage in a dose-dependent manner.


Asunto(s)
Células Ciliadas Auditivas/patología , Material Particulado/toxicidad , Pez Cebra/embriología , Animales , Recuento de Células , Embrión no Mamífero , Frecuencia Cardíaca , Modelos Animales
9.
Ear Nose Throat J ; 98(9): NP131-NP137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31088301

RESUMEN

Use of rigid endoscopes has become widespread in middle ear surgeries, thereby attracting attention to the safety of antifog agents. However, few studies on the ototoxicity of antifog agents have been conducted. The purpose of this study was to evaluate hair cell damage and the underlying mechanisms caused by antifog agents using zebrafish larvae. We exposed zebrafish larvae at 3 days postfertilization to various concentrations of the antifog agent, Ultrastop (0.01, 0.02, 0.04, and 0.08%) for 72 hours. The average number of hair cells within 4 neuromasts of larvae, including supraorbital (SO1 and SO2), otic (O1), and occipital (OC1), in the control group were compared to those in the exposure groups. Significant hair cell loss was observed in the experimental groups compared to that in the control group (P < .01; control: 53.88 ± 4.85, 0.01%: 45.08 ± 11.70, 0.02%: 41.36 ± 12.00, 0.04%: 35.36 ± 16.18, and 0.08%: 15.60 ± 7.53 cells). Concentration-dependent increase in hair cell apoptosis by terminal deoxynucleotidyltransferase (TDT)-mediated dUTP-biotin nick end labeling assay (control: 0.00 ± 0.00, 0.01%: 3.48 ± 2.18, 0.02%: 9.64 ± 5.75, 0.04%: 17.72 ± 6.26, and 0.08%: 14.60 ± 8.18 cells) and decrease in the viability of hair cell mitochondria by 2-(4-[dimethylamino] styryl)-N-ethylpyridinium iodide assay (control: 9.61 ± 1.47, 0.01%: 8.28 ± 2.22, 0.02%: 8.45 ± 2.72, 0.04%: 7.25 ± 2.44, and 0.08%: 6.77 ± 3.26 percentage of total area) were observed. Antifog agent exposure can cause hair cell damage in zebrafish larvae, possibly by induction of mitochondrial damage with subsequent apoptosis of hair cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Etanol/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Ototoxicidad , Tensoactivos/toxicidad , Animales , Etiquetado Corte-Fin in Situ , Larva , Mitocondrias , Soluciones/toxicidad , Pez Cebra
10.
Int J Radiat Biol ; 95(8): 1150-1159, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30836032

RESUMEN

Introduction: Radioprotectors can enhance the efficacy of cancer radiotherapy, but their clinical use remains uncommon. The present study aimed to assess the radioprotective potential of mistletoe extract (commercial name: Abnoba Viscum), a well-known complementary cancer medicine, in zebrafish larvae. Materials and methods: Wild-type AB zebrafish embryos at 4 h-post-fertilization were exposed to 5 Gy 9-MeV electron beam irradiation after being treated for 1 h with 4 mMl/L amifostine or 0.2 mg/ml Abnoba Viscum A, F, M, or Q. Primary endpoints were abnormality-free survival and abnormality-free rates among survivors at 5 days-post-fertilization. Results: The crude abnormality-free survival rates were 33.7%, 49.0%, 38.8%, 43.9%, 38.1%, and 52.6%, whereas abnormality-free rates among survivors were 36.4%, 49.6%, 37.8%, 45.6%, 52.0%, and 62.8% for the control (with no pharmacologic treatment), amifostine, Abnoba Viscum A, F, M, and Q groups, respectively. Abnormality-free survival rates in the amifostine and Abnoba Viscum Q groups were significantly different from those in the control (p = .040 and .012, respectively), with an odds ratio (OR) of 1.90 [95% confidence interval (CI): 1.03-3.51] and 2.20 (95% CI: 1.19-4.08), respectively. Abnormality-free rates among survivors in the amifostine and Abnoba Viscum M and Q groups were significantly different from those in the control group (p = .048, .042, and <.001, respectively), with an OR of 1.79 (95% CI: 1.00-3.20), 1.82 (95% CI: 1.02-3.26), and 2.98 (1.67-5.33), respectively. Conclusion: Abnoba Viscum Q has at least a similar radioprotective effect to that of amifostine. Mistletoe extracts have been clinically applied for a long time and their effectiveness and feasibility have been verified. Abnoba Viscum Q might be a new candidate radioprotectant to enhance cancer radiotherapy efficacy.


Asunto(s)
Muérdago , Extractos Vegetales/farmacología , Protectores contra Radiación/farmacología , Amifostina/farmacología , Animales , Embrión no Mamífero/efectos de la radiación , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA