Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(1): e0260535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100268

RESUMEN

Rice production is affected by many biotic and abiotic stresses; among them, bacterial blight (BB) and blast diseases and low soil phosphorous stress cause significant yield losses. The present study was carried out with the objective of combining the BB resistance gene, Xa21, the blast resistance gene, Pi54, and the low soil phosphorous tolerance QTL/gene, Pup1, into the genetic background of the Indian mega-rice variety, MTU1010 (Cottondora Sannalu), through marker-assisted pedigree breeding. RP5973-20-9-8-24-12-7 [a near isogenic line (NIL) of MTU1010 possessing Pup1] and RP6132 [a NIL of Akshayadhan possessing Xa21 + Pi54] were crossed and 'true' F1s were identified, using the target gene-specific markers and selfed. F2 plants, which are homozygous for all the three target genes/QTLs, were identified using PCR based markers and were advanced further through the pedigree method of breeding, with selection based on phenotypic traits specific for MTU1010. At the F5 generation, a set of 15 promising triple positive homozygous lines were identified and screened for their resistance against BB and blast diseases and tolerance to low soil P. Among them, two lines (LPK 30-18-16 and LPK 49-15-22) showed higher yields as compared to MTU1010, along with the desirable long slender grain type in both low soil P and normal soil P plots, and also exhibited high levels of resistance against BB and blast diseases, with lesser grain shattering as compared to MTU1010. These lines are being advanced for multi-location trials for validating their performance.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Fósforo/análisis , Enfermedades de las Plantas/genética , Suelo/química , Estrés Fisiológico , Bacterias/aislamiento & purificación , Marcadores Genéticos , Genotipo , India , Proteínas de Transporte de Nucleobases/genética , Oryza/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Sitios de Carácter Cuantitativo
2.
3 Biotech ; 11(12): 513, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34926111

RESUMEN

A doubled haploid (DH) population consisting of 125 DHLs derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R) was utilized for Quantitative Trait Loci (QTL) mapping to identify novel genomic regions associated with yield related traits. A genetic map was constructed with 126 polymorphic SSR and EST derived markers, which were distributed across rice genome. QTL analysis using inclusive composite interval mapping (ICIM) method identified a total of 24 major and minor effect QTLs. Among them, twelve major effect QTLs were identified for days to fifty percent flowering (qDFF12-1), total grain yield/plant (qYLD3-1 and qYLD6-1), test (1,000) grain weight (qTGW6-1 and qTGW7-1), panicle weight (qPW9-1), plant height (qPH12-1), flag leaf length (qFLL6-1), flag leaf width (qFLW4-1), panicle length (qPL3-1 and qPL6-1) and biomass (qBM4-1), explaining 29.95-56.75% of the phenotypic variability with LOD scores range of 2.72-16.51. Chromosomal regions with gene clusters were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1) and on chromosome 6 for total grain yield/plant (qYLD6-1), flag leaf length (qFLL6-1) and panicle length (qPL6-1). Majority of the QTLs identified were observed to be co-localized with the previously reported QTL regions. Five novel, major effect QTLs associated with panicle weight (qPW9-1), plant height (qPH12-1), flag leaf width (qFLW4-1), panicle length (qPL3-1) and biomass (qBM4-1) and three novel minor effect QTLs for panicle weight (qPW3-1 and qPW8-1) and fertile grains per panicle (qFGP5-1) were identified. These QTLs can be used in breeding programs aimed to yield improvement after their validation in alternative populations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03045-7.

3.
PLoS One ; 16(7): e0254526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264991

RESUMEN

With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.


Asunto(s)
Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Endogamia , Oryza , Fenotipo , Suelo
4.
Sci Rep ; 10(1): 21143, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273616

RESUMEN

Improved-Samba-Mahsuri (ISM), a high-yielding, popular bacterial blight resistant (possessing Xa21, xa13, and xa5), fine-grain type, low glycemic index rice variety is highly sensitive to low soil phosphorus (P). We have deployed marker-assisted backcross breeding (MABB) approach for targeted transfer of Pup1, a major QTL associated with low soil P tolerance, using Swarna as a donor. A new co-dominant marker, K20-1-1, which is specific for Pup1 was designed and used for foreground selection along with functional markers specific for the bacterial blight resistance genes, Xa21, xa13, and xa5. A set of 66 polymorphic SSR marker were used for the background selection along with a pair of flanking markers for the recombination selection in backcross derived progenies and in BC2F2 generation, 12 plants, which are homozygous for Pup1, all the three bacterial blight resistance genes and possessing agro-morphological traits equivalent to or better than ISM were selected and selfed to produce BC2F3s. They were evaluated in plots with low soil P and normal soil P at ICAR-IIRR, Hyderabad for their low soil P tolerance, and bacterial blight resistance and superior lines were advanced to BC2F6. One of the lines, when tested at multiple locations in India was found promising under both normal as well as low soil P conditions.


Asunto(s)
Adaptación Fisiológica , Bacterias/patogenicidad , Productos Agrícolas/fisiología , Marcadores Genéticos/genética , Oryza/fisiología , Fósforo/farmacología , Suelo/química , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Genes de Plantas , India , Oryza/genética , Oryza/microbiología , Sitios de Carácter Cuantitativo
5.
Sci Rep ; 10(1): 13695, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792551

RESUMEN

The study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23-22.76% of the phenotypic variance with LOD scores range of 6.5-10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybrids.


Asunto(s)
Mapeo Cromosómico/métodos , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas/genética , Simulación por Computador , Epistasis Genética , Ligamiento Genético , Endogamia , Repeticiones de Microsatélite , Oryza/genética , Polimorfismo de Nucleótido Simple
6.
J Genet ; 95(4): 895-903, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27994188

RESUMEN

This study was carried out to improve the RPHR-1005, a stable restorer line of the popular medium slender grain type rice hybrid, DRRH-3 for bacterial blight (BB) and blast resistance through marker-assisted backcross breeding (MABB). Two major BB resistance genes, Xa21 and Xa33 and a major blast resistance gene, Pi2 were transferred to RPHR-1005 as two individual crosses. Foreground selection for Xa21, Xa33, Pi2, Rf3 and Rf4 was done by using gene-specific functional markers, while 59 simple sequence repeat (SSR) markers polymorphic between the donors and recipient parents were used to select the best plant possessing target resistance genes at each backcross generation. Backcrossing was continued till BC2F2 and a promising homozygous backcross derived line possessing Xa21+ Pi2 and another possessing Xa33 were intercrossed to stack the target resistance genes into the genetic background of RPHR-1005. At ICF4, 10 promising lines possessing three resistance genes in homozygous condition along with fine-grain type, complete fertility restoration, better panicle exertion and taller plant type (compared to RPHR-1005) were identified.


Asunto(s)
Bacterias , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Oryza/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Cruzamiento , Genes de Plantas , Genotipo , Hibridación Genética , Repeticiones de Microsatélite , Fenotipo , Selección Genética
7.
Front Plant Sci ; 7: 1195, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27555861

RESUMEN

RPHR-1005, the stable restorer line of the popular medium slender (MS) grain type rice hybrid, DRRH-3 was improved in this study for resistance against bacterial blight (BB) and blast diseases through marker-assisted backcross breeding (MABB). In this study, four major resistance genes (i.e., Xa21 and Xa33 for BB resistance and Pi2 and Pi54 for blast resistance) have been transferred to RPHR-1005 using RPBio Patho-1 (possessing Xa21 + Pi2), RPBio Patho-2 (possessing Xa21 + Pi54) and FBR1-15EM (possessing Xa33) as the donors. Foreground selection was carried out using PCR-based molecular markers specific for the target resistance genes and the major fertility restorer genes, Rf3 and Rf4, while background selection was carried out using a set of parental polymorphic rice SSR markers and backcrossing was continued uptoBC2 generation. At BC2F2, plants possessing the gene combination- Xa21 + Pi2, Xa21 + Pi54 and Xa33 in homozygous condition and with >92% recovery of the recurrent parent genome (RPG) were identified and intercrossed to combine all the four resistance genes. Twenty-two homozygous, pyramid lines of RPHR-1005 comprising of three single-gene containing lines, six 2-gene containing lines, eight 3-gene containing lines, and five 4-gene containing lines were identified among the double intercross lines at F3 generation (DICF3). They were then evaluated for their resistance against BB and blast, fertility restoration ability and for key agro-morphological traits. While single gene containing lines were resistant to either BB or blast, the 2-gene, 3-gene, and 4-gene pyramid lines showed good level of resistance against both and/or either of the two diseases. Most of the 2-gene, 3-gene, and 4-gene containing pyramid lines showed yield levels and other key agro-morphological and grain quality traits comparable to the original recurrent parent and showed complete fertility restoration ability, with a few showing higher yield as compared to RPHR-1005. Further, the experimental hybrids derived by crossing the gene-pyramid lines of RPHR-1005 with APMS6A (the female parent of DRRH-3), showed heterosis levels equivalent to or higher than DRRH-3. The results of present study exemplify the utility of MABB for targeted improvement of multiple traits in hybrid rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...