Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(49): 34116-25, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19843529

RESUMEN

Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNA(f)(Met)). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNA(f)(Met), as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNA(f)(Met) to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNA(f)(Met). This accessory factor might be unnecessary when formylated Met-tRNA(f)(Met) is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Delta fmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNA(f)(Met) due to loss of the MIS1 gene that encodes the mitochondrial C(1)-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Transferasas de Hidroximetilo y Formilo/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Epítopos/química , Proteínas de la Membrana/química , Modelos Genéticos , Mutación , Fenotipo , Plásmidos/metabolismo , Mutación Puntual , Unión Proteica , Biosíntesis de Proteínas , ARN de Transferencia/química , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
Methods Enzymol ; 425: 185-209, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673084

RESUMEN

All organisms modify their tRNAs by use of evolutionarily conserved enzymes. Members of the Archaea contain an extensive set of modified nucleotides that were early evidence of the fundamental evolutionary divergence of the Archaea from Bacteria and Eucarya. However, the enzymes responsible for these posttranscriptional modifications were largely unknown before the advent of genome sequencing. This chapter explains methods to identify tRNA methyltransferases in genome sequences, emphasizing the identification and characterization of six enzymes from the hyperthermophilic archaeon Methanocaldococcus jannaschii. We describe methods to express these proteins, purify or synthesize tRNA substrates, measure methyltransferase activity, and map tRNA modifications. Comparison of the archaeal methyltransferases with their yeast homologs suggests that the common ancestor of the archaeal and eucaryal organismal lineages already had extensive tRNA modifications.


Asunto(s)
Archaea/enzimología , Hongos/enzimología , ARNt Metiltransferasas/análisis , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular
3.
J Biol Chem ; 282(38): 27744-53, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17652090

RESUMEN

The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Guanosina/química , ARN de Transferencia/química , ARN/química , Proteínas de Saccharomyces cerevisiae/fisiología , ARNt Metiltransferasas/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Citoplasma/metabolismo , Mitocondrias/metabolismo , Mutación , Consumo de Oxígeno , Estructura Terciaria de Proteína , ARN Mitocondrial , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fracciones Subcelulares/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología
4.
Arch Biochem Biophys ; 439(1): 113-20, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15935987

RESUMEN

The COOH-terminal part of the yeast mitochondrial initiation factor 2 (ymIF2), containing the C2 subdomain, was expressed and purified as a histidine-tagged polypeptide of 137 amino acids. Like the recombinant full-length protein, the C2 subdomain binds both formyl-Met-tRNA(f)(Met) and unformylated Met-tRNA(f)(Met) with only a small preference for the former species. Formation of a binary complex between the C2 subdomain or the full-length ymIF2 and initiator tRNA was also assessed by fluorescence measurements. The binding of coumarin-Met-tRNA(f) to either protein caused a blue shift of the coumarin emission spectrum and an increase in anisotropy. Full-length ymIF2 is functionally competent in forming an initiation complex and supporting formation of the first peptide bond on Escherichia coli ribosomes. The results demonstrate that ymIF2 has the same domain structure and biochemical properties of a typical IF2 species as found in bacteria or mammalian mitochondria--but with enhanced ability to bind unformylated initiator Met-tRNA.


Asunto(s)
Mitocondrias/enzimología , Factores de Iniciación de Péptidos/química , ARN de Transferencia de Metionina/química , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Cumarinas/química , Escherichia coli/química , Estructura Terciaria de Proteína
5.
J Biol Chem ; 278(34): 31774-80, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12799364

RESUMEN

Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by normal growth on non-fermentable carbon sources. Here we show that mitochondrial translation products in Saccharomyces cerevisiae were synthesized in the absence of formylated initiator tRNA. ifm1 mutants, lacking the mitochondrial initiation factor 2 (mIF2), are unable to respire, indicative of defective mitochondrial protein synthesis, but their respiratory defect could be complemented by plasmid-borne copies of either the yeast IFM1 gene or a cDNA encoding bovine mIF2. Moreover, the bovine mIF2 sustained normal respiration in ifm1 fmt1 double mutants. Bovine mIF2 supported the same pattern of mitochondrial translation products as yeast mIF2, and the pattern did not change in cells lacking formylated Met-tRNAfMet. Mutant yeast lacking any mIF2 retained the ability to synthesize low levels of a subset of mitochondrially encoded proteins. The ifm1 null mutant was used to analyze the domain structure of yeast mIF2. Contrary to a previous report, the C terminus of yeast mIF2 is required for its function in vivo, whereas the N-terminal domain could be deleted. Our results indicate that formylation of initiator methionyl-tRNA is not required for mitochondrial protein synthesis. The ability of bovine mIF2 to support mitochondrial translation in the yeast fmt1 mutant suggests that this phenomenon may extend to mammalian mitochondria as well.


Asunto(s)
Mitocondrias/metabolismo , Factor 2 Procariótico de Iniciación/fisiología , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Prueba de Complementación Genética , Factor 2 Procariótico de Iniciación/genética , Saccharomyces cerevisiae/genética
6.
Arch Biochem Biophys ; 413(2): 243-52, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12729623

RESUMEN

Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Animales , Bovinos , Cromatografía en Capa Delgada , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Factores de Tiempo
7.
Arch Biochem Biophys ; 403(1): 63-70, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12061803

RESUMEN

The molecular chaperone DnaK and trigger factor (TF), a ribosome-associated protein with folding activity, have been implicated in assisting nascent polypeptides to acquire a three-dimensional structure on Escherichia coli ribosomes. We asked whether ribosomes that lack trigger factor would recruit DnaK for synthesis and folding of nascent peptides. For these analyses, translating ribosomes with a homogeneous population of nascent peptides were isolated. Truncated forms of rhodanese and E. coli translation initiation factor 3 (IF3) were generated with tandem rare arginine codons in the coding sequence. These codons cause strong translational pausing during coupled transcription/translation in E. coli extracts, generating nascent polypeptides on ribosomes. Protein synthesis in the TF(-) extract was initiated with biotin-Met-tRNA(f). Ribosomes with nascent polypeptides were isolated by interaction of the N-terminal biotin with streptavidin on magnetobeads. These translating ribosomes that lack TF contain the molecular chaperone DnaK in considerably less than stoichiometric amounts.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/metabolismo , Ribosomas/metabolismo , Arginina/metabolismo , Western Blotting , Sistema Libre de Células , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Péptidos/química , Plásmidos/metabolismo , Factor 3 Procariótico de Iniciación , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Estreptavidina/farmacología , Tiosulfato Azufretransferasa/metabolismo , Transcripción Genética
8.
FEBS Lett ; 512(1-3): 209-12, 2002 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-11852081

RESUMEN

The coding sequence for chloramphenicol acetyl transferase (CAT) contains several rare codons; three of them are ATA encoding isoleucine in positions 13, 84 and 119 of the amino acid sequence. Expression of CAT on Escherichia coli ribosomes in vitro results in mostly full-length product but also distinct smaller polypeptides from less than 3 kDa to over 20 kDa. As reported earlier, the smaller polypeptides are the predominant products, if translation is initiated with fluorophore-Met-tRNA(f). All this translational pausing is eliminated when the first ATA codon is mutated to ATC, a frequently used codon for isoleucine in E. coli. Addition of large amounts of E. coli tRNA to the coupled transcription/translation reaction does not reduce the number of pause-site peptides seen in the expression of wild-type CAT. Thus we hypothesize that the mRNA structure may be an important determinant for translational pausing.


Asunto(s)
Cloranfenicol O-Acetiltransferasa/genética , Codón , Escherichia coli/genética , Isoleucina/genética , Extensión de la Cadena Peptídica de Translación , Secuencia de Bases , Sistema Libre de Células , Cloranfenicol O-Acetiltransferasa/biosíntesis , Escherichia coli/enzimología , Datos de Secuencia Molecular , Mutagénesis , Conformación de Ácido Nucleico , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...