Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Structure ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39326419

RESUMEN

The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293237

RESUMEN

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

3.
J Forensic Sci ; 68(5): 1504-1519, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310108

RESUMEN

Synthetic opioids such as fentanyl account for over 71,000 of the approximately 107,000 overdose deaths reported in the United States in 2021. Fentanyl remains the fourth most identified drug by state and local forensic laboratories, and the second most identified drug by federal laboratories. The unambiguous identification of fentanyl-related substances (FRS) is challenging due to the absence or low abundance of a molecular ion in a typical gas chromatography-mass spectrometry (GC-MS) analysis and due to a low number of fragment ions that are similar among the many potential isomers of FRS. This study describes the utility of a previously reported gas chromatography-infrared (GC-IR) library for the identification of FRS within a blind, interlaboratory study (ILS) involving seven forensic laboratories. Twenty FRS reference materials, including those with isomer pairs in the library, were selected based on either their presence in the NIST library and/or some similarity of the mass spectra information produced. The ILS participants were requested to use the Florida International University (FIU) GC-MS and GC-IR libraries supplied by FIU to search for matches to their unknown spectra generated from in-house GC-MS and GC-IR analysis. The laboratories reported improvement in the positive identification of unknown FRS from ~75% using GC-MS alone to 100% correct identification using GC-IR analysis. One laboratory participant used solid phase IR analysis, which produced spectra incompatible with the vapor phase GC-IR library to generate a good comparison spectrum. However, this improved when searched against a solid phase IR library.


Asunto(s)
Fentanilo , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Isomerismo , Análisis Espectral
4.
Cell Rep ; 42(2): 112044, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708513

RESUMEN

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.


Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , VIH-1 , Hepatitis C , Humanos , Hepacivirus , Anticuerpos Neutralizantes , SARS-CoV-2 , Anticuerpos Anti-VIH
5.
J Appl Gerontol ; 42(3): 399-408, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36274581

RESUMEN

Social withdrawal and isolation are frequently experienced among people with cognitive impairment, Alzheimer's disease, and Alzheimer's disease related dementias. Few assistive technologies exist to support persons with memory concerns' (PWMC) continuing social engagement. This study aimed to understand PWMC and family caregivers' initial perspectives on the feasibility and utility of a wearable technology-based social memory aid. We recruited 20 dyads, presented the memory aid, and conducted semi-structured interviews from June to August 2020 over Zoom video conferencing. Interviews were transcribed and analyzed using thematic analysis. Overall, participants anticipated the technology could reduce socializing-related stress now and in the future for both members of the care dyad. However, certain features of the memory aid (e.g., visitors must have the app), could limit utility, and participants provided recommendations to enhance the tool. Our findings will inform future technology-enabled social memory aid development for PWMC and family caregivers.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Dispositivos de Autoayuda , Humanos , Participación Social , Cuidadores/psicología
6.
Nat Commun ; 13(1): 3466, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710908

RESUMEN

RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , Vacuna BNT162 , Linfocitos T CD8-positivos , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Proteómica , ARN Viral/genética , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
7.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35472136

RESUMEN

The protective human antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) focuses on the spike (S) protein, which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope ("supersite") on the N-terminal domain (NTD). Using the single B cell technology called linking B cell receptor to antigen specificity through sequencing (LIBRA-Seq), we isolated a large panel of NTD-reactive and SARS-CoV-2-neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies against the NTD supersite were commonly encoded by the IGHV1-24 gene, forming a genetic cluster representing a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface (TI) and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited the cell-to-cell spread of the virus in culture, and conferred protection in human angiotensin-converting enzyme 2-transgenic (ACE2-transgenic) mice against the SARS-CoV-2 challenge. This study provides insight into antibody targeting of the S protein TI region, suggesting this region may be a site of virus vulnerability.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/genética , Humanos , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
8.
Nat Biotechnol ; 40(8): 1270-1275, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35241839

RESUMEN

Although several monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been approved for coronavirus disease 2019 (COVID-19) therapy, development was generally inefficient, with lead generation often requiring the production and testing of numerous antibody candidates. Here, we report that the integration of target-ligand blocking with a previously described B cell receptor-sequencing approach (linking B cell receptor to antigen specificity through sequencing (LIBRA-seq)) enables the rapid and efficient identification of multiple neutralizing mAbs that prevent the binding of SARS-CoV-2 spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The combination of target-ligand blocking and high-throughput antibody sequencing promises to increase the throughput of programs aimed at discovering new neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/uso terapéutico , Humanos , Ligandos , Peptidil-Dipeptidasa A , Receptores de Antígenos de Linfocitos B/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
9.
Cell Rep ; 37(1): 109784, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34592170

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of coronavirus disease (COVID-19). Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclonal antibodies to SARS-CoV-2 is of utmost importance. Here, we report a panel of SARS-CoV-2 antibodies isolated using the linking B cell receptor to antigen specificity through sequencing (LIBRA-seq) technology from an individual who recovered from COVID-19. Of these antibodies, 54042-4 shows potent neutralization against authentic SARS-CoV-2 viruses, including variants of concern (VOCs). A cryoelectron microscopy (cryo-EM) structure of 54042-4 in complex with the SARS-CoV-2 spike reveals an epitope composed of residues that are highly conserved in currently circulating SARS-CoV-2 lineages. Further, 54042-4 possesses uncommon genetic and structural characteristics that distinguish it from other potently neutralizing SARS-CoV-2 antibodies. Together, these findings provide motivation for the development of 54042-4 as a lead candidate to counteract current and future SARS-CoV-2 VOCs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/genética , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Microscopía por Crioelectrón , Mapeo Epitopo/métodos , Epítopos/química , Epítopos/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
10.
Vaccines (Basel) ; 9(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34579201

RESUMEN

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA