Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 130: 63-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23639852

RESUMEN

As Stern-Gerlach type spin filters do not work with electrons, spin analysis of electron beams is accomplished by spin-dependent scattering processes based on spin-orbit or exchange interaction. Existing polarimeters are single-channel devices characterized by an inherently low figure of merit (FoM) of typically 10⁻4-10⁻³. This single-channel approach is not compatible with parallel imaging microscopes and also not with modern electron spectrometers that acquire a certain energy and angular interval simultaneously. We present a novel type of polarimeter that can transport a full image by making use of k-parallel conservation in low-energy electron diffraction. We studied specular reflection from Ir (001) because this spin-filter crystal provides a high analyzing power combined with a "lifetime" in UHV of a full day. One good working point is centered at 39 eV scattering energy with a broad maximum of 5 eV usable width. A second one at about 10 eV shows a narrower profile but much higher FoM. A relativistic layer-KKR SPLEED calculation shows good agreement with measurements.

2.
J Microsc ; 242(2): 216-20, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21155993

RESUMEN

By example of a Permalloy particle (40 × 40 µm(2) size, 30 nm thickness) we demonstrate a procedure to quantitatively investigate the dynamics of magnetic stray fields during ultrafast magnetization reversal. The measurements have been performed in a time-resolving photoemission electron microscope using the X-ray magnetic circular dichroism. In the particle under investigation, we have observed a flux-closure-dominated magnetic ground structure, minimizing the magnetic stray field outside the sample. A fast magnetic field pulse introduced changes in the micromagnetic structure accompanied with an incomplete flux closure. As a result, stray fields arise along the edges of domains, which cause a change of contrast and an image deformation of the particles geometry (curvature of its edge). The magnetic stray fields are calculated from a deformation of the X-ray magnetic circular dichroism (XMCD) images taken after the magnetic field pulse in a 1 ns interval. These measurements reveal a decrease of magnetic stray fields with time. An estimate of the lower limit of the domain wall velocity yields about 2 × 10(3) m s(-1).

3.
Phys Rev Lett ; 95(20): 207201, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16384091

RESUMEN

We investigated the magnetodynamics in rectangular Permalloy platelets by means of time-resolved x-ray photoemission microscopy. 10 nm thick platelets of size 16 x 32 microm were excited by an oscillatory field along the short side of the sample with a fundamental frequency of 500 MHz and considerable contributions of higher harmonics. Under the influence of the oscillatory field, the Néel wall in the initial classical Landau pattern shifts away from the center, corresponding to an induced magnetic moment perpendicular to the exciting field. This phenomenon is explained by a self-trapping effect of the dominating spin-wave mode when the system is excited just below the resonance frequency. The basic driving mechanism is the maximization of entropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA