Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 18(8): 953-958, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312564

RESUMEN

Unbiased quantitative analysis of macroscopic biological samples demands fast imaging systems capable of maintaining high resolution across large volumes. Here we introduce RAPID (rapid autofocusing via pupil-split image phase detection), a real-time autofocus method applicable in every widefield-based microscope. RAPID-enabled light-sheet microscopy reliably reconstructs intact, cleared mouse brains with subcellular resolution, and allowed us to characterize the three-dimensional (3D) spatial clustering of somatostatin-positive neurons in the whole encephalon, including densely labeled areas. Furthermore, it enabled 3D morphological analysis of microglia across the entire brain. Beyond light-sheet microscopy, we demonstrate that RAPID maintains high image quality in various settings, from in vivo fluorescence imaging to 3D tracking of fast-moving organisms. RAPID thus provides a flexible autofocus solution that is suitable for traditional automated microscopy tasks as well as for quantitative analysis of large biological specimens.


Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microglía/citología , Microscopía Fluorescente/métodos , Animales , Masculino , Ratones
2.
IEEE Trans Med Imaging ; 37(4): 829-839, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28600240

RESUMEN

We present a novel approach to the problem of neuron segmentation in image volumes acquired by an electron microscopy. Existing methods, such as agglomerative or correlation clustering, rely solely on boundary evidence and have problems where such an evidence is lacking (e.g., incomplete staining) or ambiguous (e.g., co-located cell and mitochondria membranes). We investigate if these difficulties can be overcome by means of sparse region appearance cues that differentiate between pre- and postsynaptic neuron segments in mammalian neural tissue. We combine these cues with the traditional boundary evidence in the asymmetric multiway cut (AMWC) model, which simultaneously solves the partitioning and the semantic region labeling problems. We show that AMWC problems over superpixel graphs can be solved to global optimality with a cutting plane approach, and that the introduction of semantic class priors leads to significantly better segmentations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica/métodos , Neuronas/citología , Algoritmos , Animales , Ratones
3.
J Microsc ; 259(2): 143-154, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26191646

RESUMEN

The development of realistic neuroanatomical models of peripheral nerves for simulation purposes requires the reconstruction of the morphology of the myelinated fibres in the nerve, including their nodes of Ranvier. Currently, this information has to be extracted by semimanual procedures, which severely limit the scalability of the experiments. In this contribution, we propose a supervised machine learning approach for the detailed reconstruction of the geometry of fibres inside a peripheral nerve based on its high-resolution serial section images. Learning from sparse expert annotations, the algorithm traces myelinated axons, even across the nodes of Ranvier. The latter are detected automatically. The approach is based on classifying the myelinated membranes in a supervised fashion, closing the membrane gaps by solving an assignment problem, and classifying the closed gaps for the nodes of Ranvier detection. The algorithm has been validated on two very different datasets: (i) rat vagus nerve subvolume, SBFSEM microscope, 200 × 200 × 200 nm resolution, (ii) rat sensory branch subvolume, confocal microscope, 384 × 384 × 800 nm resolution. For the first dataset, the algorithm correctly reconstructed 88% of the axons (241 out of 273) and achieved 92% accuracy on the task of Ranvier node detection. For the second dataset, the gap closing algorithm correctly closed 96.2% of the gaps, and 55% of axons were reconstructed correctly through the whole volume. On both datasets, training the algorithm on a small data subset and applying it to the full dataset takes a fraction of the time required by the currently used semiautomated protocols. Our software, raw data and ground truth annotations are available at http://hci.iwr.uni-heidelberg.de/Benchmarks/. The development version of the code can be found at https://github.com/RWalecki/ATMA.


Asunto(s)
Axones/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Nervios Periféricos/ultraestructura , Nódulos de Ranvier/ultraestructura , Aprendizaje Automático Supervisado , Algoritmos , Animales , Conjuntos de Datos como Asunto , Nervios Periféricos/citología , Ratas , Nervio Vago/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA