Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Rev. bras. ciênc. avic ; 25(2): eRBCA-2022-1728, 2023. graf, tab
Artículo en Inglés | VETINDEX | ID: biblio-1434068

RESUMEN

We assessed the extent to which CO2 levels altered different hatching and chick parameters. In Experiments 1 and 2, a total of 16,184 eggs from Cobb 500 breeders were incubated in single stage incubators under three different conditions: (a) standard ventilated incubator (CON, Exp.1 and 2); (b) increasing CO2 levels during the first 10 days of incubation until 0.7% (V7000, Exp. 1) and (c) until 0.8% (V8000, Exp. 2). High levels of CO2 improved hatchability, possibly due to lower embryo mortality from ED18 to ED21. Internal and external pipping in experiment V8000 started later than in CON; nevertheless, the hatch still occurred before in V8000 as a result of the shorter durations of external pipping and hatch. In Experiment 3, a total of 12,138 eggs from Cobb 500 were incubated in single stage incubators under three different conditions: (a) standard ventilated incubator (CON); (b) increasing CO2 levels until 1.0% with ventilation (V10000); and (c) increasing CO2 levels until 1.0% without ventilation (NV10000). Hypercapnic conditions led to better hatchability and lower embryo mortality from ED18 to ED21. Internal pipping started earlier in NV10000, but only V10000 differed from CON in terms of the average time for hatch. Hypercapnic groups also showed shorter durations of external pipping and hatch when compared to CON. Post-hatch analysis revealed no differences among incubation conditions in terms of body weight gain, feed conversion ratio, mortality by sudden death syndrome, and production factor. Nevertheless, V10000 showed a lower mortality by ascites and a better viability when compared to CON, while NV10000 presented a higher mortality by other causes. Altogether, our findings indicate that in addition to not being detrimental to embryo survival, high CO2 levels reduce embryonic mortality at 18-21 days of incubation and increase hatchability.(AU)


Asunto(s)
Animales , Embrión de Pollo/crecimiento & desarrollo , Mortalidad Fetal , Desarrollo Embrionario
2.
Poult Sci ; 91(10): 2710-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22991561

RESUMEN

Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.


Asunto(s)
Crianza de Animales Domésticos/métodos , Embrión de Pollo/crecimiento & desarrollo , Pollos/fisiología , Lógica Difusa , Óvulo/fisiología , Envejecimiento , Animales , Embrión de Pollo/fisiología , Modelos Logísticos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA