Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(3)2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38543790

RESUMEN

Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αß CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.


Asunto(s)
Infecciones por Poxviridae , Piel , Humanos , Animales , Ratones , Piel/patología , Administración Cutánea , Infecciones por Poxviridae/patología , Virus Vaccinia , Cicatrización de Heridas , Ratones Endogámicos C57BL
2.
PLoS Pathog ; 15(10): e1007778, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31603920

RESUMEN

Type I interferons (T1-IFN) are critical in the innate immune response, acting upon infected and uninfected cells to initiate an antiviral state by expressing genes that inhibit multiple stages of the lifecycle of many viruses. T1-IFN triggers the production of Interferon-Stimulated Genes (ISGs), activating an antiviral program that reduces virus replication. The importance of the T1-IFN response is highlighted by the evolution of viral evasion strategies to inhibit the production or action of T1-IFN in virus-infected cells. T1-IFN is produced via activation of pathogen sensors within infected cells, a process that is targeted by virus-encoded immunomodulatory molecules. This is probably best exemplified by the prototypic poxvirus, Vaccinia virus (VACV), which uses at least 6 different mechanisms to completely block the production of T1-IFN within infected cells in vitro. Yet, mice lacking aspects of T1-IFN signaling are often more susceptible to infection with many viruses, including VACV, than wild-type mice. How can these opposing findings be rationalized? The cytosolic DNA sensor cGAS has been implicated in immunity to VACV, but has yet to be linked to the production of T1-IFN in response to VACV infection. Indeed, there are two VACV-encoded proteins that effectively prevent cGAS-mediated activation of T1-IFN. We find that the majority of VACV-infected cells in vivo do not produce T1-IFN, but that a small subset of VACV-infected cells in vivo utilize cGAS to sense VACV and produce T1-IFN to protect infected mice. The protective effect of T1-IFN is not mediated via ISG-mediated control of virus replication. Rather, T1-IFN drives increased expression of CCL4, which recruits inflammatory monocytes that constrain the VACV lesion in a virus replication-independent manner by limiting spread within the tissue. Our findings have broad implications in our understanding of pathogen detection and viral evasion in vivo, and highlight a novel immune strategy to protect infected tissue.


Asunto(s)
Quimiocina CCL4/metabolismo , Interferón Tipo I/farmacología , Proteínas de la Membrana/fisiología , Nucleotidiltransferasas/fisiología , Virus Vaccinia/efectos de los fármacos , Vaccinia/prevención & control , Carga Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Quimiocina CCL4/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/virología , Vaccinia/inmunología , Vaccinia/metabolismo , Vaccinia/virología , Virus Vaccinia/inmunología , Replicación Viral
3.
PLoS Pathog ; 13(6): e1006435, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28614386

RESUMEN

The goal of the innate immune system is to reduce pathogen spread prior to the initiation of an effective adaptive immune response. Following an infection at a peripheral site, virus typically drains through the lymph to the lymph node prior to entering the blood stream and being systemically disseminated. Therefore, there are three distinct spatial checkpoints at which intervention to prevent systemic spread of virus can occur, namely: 1) the site of infection, 2) the draining lymph node via filtration of lymph or 3) the systemic level via organs that filter the blood. We have previously shown that systemic depletion of phagocytic cells allows viral spread after dermal infection with Vaccinia virus (VACV), which infects naturally through the skin. Here we use multiple depletion methodologies to define both the spatial checkpoint and the identity of the cells that prevent systemic spread of VACV. Subcapsular sinus macrophages of the draining lymph node have been implicated as critical effectors in clearance of lymph borne viruses following peripheral infection. We find that monocyte populations recruited to the site of VACV infection play a critical role in control of local pathogenesis and tissue damage, but do not prevent dissemination of virus. Following infection with virulent VACV, the subcapsular sinus macrophages within the draining lymph node become infected, but are not exclusively required to prevent systemic spread. Rather, small doses of VACV enter the bloodstream and the function of systemic macrophages, but not dendritic cells, is required to prevent further spread. The results illustrate that a systemic innate response to a peripheral virus infection may be required to prevent widespread infection and pathology following infection with virulent viruses, such as poxviruses.


Asunto(s)
Inmunidad Innata/inmunología , Macrófagos/inmunología , Virus Vaccinia/inmunología , Vaccinia/inmunología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente
4.
J Virol ; 89(19): 9974-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202250

RESUMEN

UNLABELLED: Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. IMPORTANCE: Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic orthopoxvirus infections for which there are no effective treatments. Moreover, the safety of the smallpox vaccine is of great concern, as complications may arise, resulting in morbidity. Like many viruses that cause significant human diseases, orthopoxviruses spread from a peripheral site of infection to become systemic. This study elucidates the early requirement for innate immune cells in controlling a peripheral infection with ECTV, the causative agent of mousepox. We report that there is redundancy in the function of two innate immune cell subsets in controlling virus spread early during infection. The viral control mediated by these cell subsets presents a potential target for therapies and rational vaccine design.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Virus de la Ectromelia/inmunología , Virus de la Ectromelia/patogenicidad , Ectromelia Infecciosa/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Citocinas/biosíntesis , Células Dendríticas/clasificación , Virus de la Ectromelia/fisiología , Ectromelia Infecciosa/transmisión , Ectromelia Infecciosa/virología , Granulocitos/inmunología , Humanos , Inmunidad Innata , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Replicación Viral , Zoonosis/inmunología , Zoonosis/transmisión , Zoonosis/virología
5.
Cell Host Microbe ; 13(6): 701-10, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23768494

RESUMEN

Nuclear factor kappa B (NF-κB) and type 1 interferon (T1-IFN) signaling are innate immune mechanisms activated upon viral infection. However, the role of NF-κB and its interplay with T1-IFN in antiviral immunity is poorly understood. We show that NF-κB is essential for resistance to ectromelia virus (ECTV), a mouse orthopoxvirus related to the virus causing human smallpox. Additionally, an ECTV mutant lacking an NF-κB inhibitor activates NF-κB more effectively in vivo, resulting in increased proinflammatory molecule transcription in uninfected cells and organs and decreased viral replication. Unexpectedly, NF-κB activation compensates for genetic defects in the T1-IFN pathway, such as a deficiency in the IRF7 transcription factor, resulting in virus control. Thus, overlap between the T1-IFN and NF-κB pathways allows the host to overcome genetic or pathogen-induced deficiencies in T1-IFN and survive an otherwise lethal poxvirus infection. These findings may also explain why some pathogens target both pathways to cause disease.


Asunto(s)
Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Transducción de Señal , Animales , Inmunidad Innata , Ratones
6.
PLoS Pathog ; 8(1): e1002475, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22241999

RESUMEN

Type 1 interferons (T1-IFNs) play a major role in antiviral defense, but when or how they protect during infections that spread through the lympho-hematogenous route is not known. Orthopoxviruses, including those that produce smallpox and mousepox, spread lympho-hematogenously. They also encode a decoy receptor for T1-IFN, the T1-IFN binding protein (T1-IFNbp), which is essential for virulence. We demonstrate that during mousepox, T1-IFNs protect the liver locally rather than systemically, and that the T1-IFNbp attaches to uninfected cells surrounding infected foci in the liver and the spleen to impair their ability to receive T1-IFN signaling, thus facilitating virus spread. Remarkably, this process can be reversed and mousepox cured late in infection by treating with antibodies that block the biological function of the T1-IFNbp. Thus, our findings provide insights on how T1-IFNs function and are evaded during a viral infection in vivo, and unveil a novel mechanism for antibody-mediated antiviral therapy.


Asunto(s)
Anticuerpos Antivirales/farmacología , Virus de la Ectromelia/metabolismo , Ectromelia Infecciosa/inmunología , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Factores de Virulencia/antagonistas & inhibidores , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Cricetinae , Virus de la Ectromelia/inmunología , Virus de la Ectromelia/patogenicidad , Ectromelia Infecciosa/tratamiento farmacológico , Ectromelia Infecciosa/metabolismo , Femenino , Hígado/inmunología , Hígado/metabolismo , Hígado/virología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Bazo/inmunología , Bazo/metabolismo , Bazo/virología , Virus de la Viruela/inmunología , Virus de la Viruela/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Acoplamiento Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...