RESUMEN
A chemoenzymatic strategy for the synthesis of enantiomerically pure novel alkaloids (1S,3R)-1-benzyl-2,3-dimethyl-1,2,3,4-tetrahydroisoquinolines is presented. The key steps are the biocatalytic stereoselective reductive amination of substituted 1-phenylpropan-2-one derivatives to yield chiral amines employing microbial ω-transaminases, and the diastereoselective reduction of a Bischler-Napieralski imine intermediate by catalytic hydrogenation in the presence of palladium on charcoal, leading exclusively to the desired cis-isomer.
RESUMEN
Omega-transaminases have been evaluated as biocatalysts in the reductive amination of organoselenium acetophenones to the corresponding amines, and in the kinetic resolution of racemic organoselenium amines. Kinetic resolution proved to be more efficient than the asymmetric reductive amination. By using these methodologies we were able to obtain both amine enantiomers in high enantiomeric excess (up to 99%). Derivatives of the obtained optically pure o-selenium 1-phenylethyl amine were evaluated as ligands in the palladium-catalyzed asymmetric alkylation, giving the alkylated product in up to 99% ee.
Asunto(s)
Aminas/química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/síntesis química , Selenio/química , Transaminasas/metabolismo , Alquilación , Catálisis , Ésteres/síntesis química , Ésteres/química , Cinética , Ligandos , Estructura Molecular , Estereoisomerismo , Transaminasas/químicaRESUMEN
The lipase-catalyzed kinetic resolution of rac-1-phenylethanol with vinyl acetate as acyl donor and cyclohexane as solvent has been investigated applying both microwave dielectric heating and conventional thermal heating in order to probe the existence of nonthermal microwave effects. All transformations were conducted at 40 degrees C in a dedicated reactor setup that allowed accurate internal reaction temperature measurements with use of fiber-optic probes. Quartz reaction vessels that allow higher levels of microwave power to be administered to the reaction mixture were used for all experiments. For all five studied immobilized lipases, the observed reactivities and enantioselectivities in microwave and oil bath experiments were identical and thus not related to the presence of the microwave field. The effect of magnetic stirring proved critical as too rapid stirring in some instances destroyed the enzyme support structure and led to altered reactivities and selectivities.