Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274827

RESUMEN

1H spin-lattice relaxation experiments have been performed for gels based on fish collagen in order to analyze water dynamics. The covered frequency range ranges from 10 kHz to 10 MHz; in some cases, the temperature has varied as well. The relaxation data have been reproduced in terms of two models of water motion-a model including two relaxation contributions associated with the diffusion of water molecules on the macromolecular surfaces and a second model being just a phenomenological power law. The concept of surface diffusion has led to a very good agreement with the experimental data and a consistent set of parameters, with the diffusion coefficients being about five orders of magnitude slower compared to bulk water for one of the pools and considerably faster for the second one (smaller by factors between 2 and 20 compared to bulk water). In some cases, the attempt to reproduce the data in terms of a power law has led to a good agreement with the experimental data (the power law factor varying between 0.41 and 0.57); however, in other cases, the discrepancies are significant. This outcome favors the concept of surface diffusion.

2.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893297

RESUMEN

1H fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been thoroughly analyzed, with a focus on identifying relaxation contributions associated with the solid and liquid fractions of the systems and non-exponentiality of the relaxation processes. It has been observed that 1H spin-lattice relaxation rates for crystal sugar (solid) vary between 0.45 s-1 and 0.59 s-1, and the relaxation process shows only small deviations from exponentiality (a quantitative measure of the exponentiality has been provided). The 1H spin-lattice relaxation process for sugar/water mixtures has turned out to be bi-exponential, with the relaxation rates varying between about 13 s-1-17 s-1 (for the faster component) and about 2.1 s-1-3.5 s-1 (for the slower component), with the ratio between the amplitudes of the relaxation contributions ranging between 2.8 and 4.2. The narrow ranges in which the parameters vary make them a promising marker of the quality and authenticity of sugar.

3.
J Dairy Sci ; 107(10): 7691-7703, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851570

RESUMEN

The aim of the study was to enquire to which extend 1H spin-lattice nuclear magnetic resonance (NMR) relaxometry data collected over a broad range of resonance frequencies (from 10 kHz to 10 MHz) have the potential to be used for assessing quality and authenticity of different categories of cheese. The following cheeses were selected mozzarella, processed cheese, pizza cheese, pizza cheese with modified fat phase), low-fat cheese, and long ripened cheese. The cheeses from 3 different production plants and various cheese production batches were used in the study. The samples from each group were subjected to instrumental composition analysis (FoodScan analyzer type 78810, FOSS, Hillerod, Denmark), water activity assessment (Aqualab 4TEV analyzer, type S40001855) and nuclear magnetic resonance relaxation dispersion study (SMARtracer FFC relaxometer, Stelar S.r.l, Italy). The state and dynamics of water present in products as free and bound water largely determines the properties of food products, including cheeses. Nuclear magnetic resonance relaxometry studies of cheese enable to reveal relaxation features characteristic of specific categories of cheese. Consequently, the studies can be treated as a step toward exploiting NMR relaxometry for accessing quality and authenticity of cheese. It was shown that at low resonance frequencies, the lower the moisture, the larger the relaxation rate. The durability and quality of cheeses depend on the presence and condition of water, so it is necessary to find a relationship between the presence, condition and mobility of water in cheeses, to increase and improve the quality and extend the shelf life.


Asunto(s)
Queso , Espectroscopía de Resonancia Magnética , Agua , Queso/análisis , Animales
4.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38606737

RESUMEN

1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10 kHz to 10 MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated. The theory has been exploited for a thorough interpretation of a large set of the experimental data. The importance of the 1H-2H relaxation contributions has been discussed, and the possibility of revealing dynamical properties of individual liquid components in binary liquids has been carefully investigated. As far as the dynamical properties of the specific binary liquids, chosen as an example, are considered, it has been shown that in the presence of the second component (alanine, glycine, and aspartic acid), both molecular fractions undergo dynamics similar to that of glycerol in bulk.

5.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656443

RESUMEN

1H spin-lattice Nuclear Magnetic Resonance relaxometry experiments have been performed for collagen and collagen-based artificial tissues in the frequency range of 10 kHz-20 MHz. The studies were performed for non-hydrated and hydrated materials. The relaxation data have been interpreted as including relaxation contributions originating from 1H-1H and 1H-14N dipole-dipole interactions, the latter leading to Quadrupole Relaxation Enhancement effects. The 1H-1H relaxation contributions have been decomposed into terms associated with dynamical processes on different time scales. A comparison of the parameters for the non-hydrated and hydrated systems has shown that hydration leads to a decrease in the dipolar relaxation constants without significantly affecting the dynamical processes. In the next step, the relaxation data for the hydrated systems were interpreted in terms of a model assuming two-dimensional translational diffusion of water molecules in the vicinity of the macromolecular surfaces and a sub-diffusive motion leading to a power law of the frequency dependencies of the relaxation rates. It was found that the water diffusion process is slowed down by at least two orders of magnitude compared to bulk water diffusion. The frequency dependencies of the relaxation rates in hydrated tissues and hydrated collagen are characterized by different power laws (ωH-ß, where ωH denotes the 1H resonance frequency): the first of about 0.4 and the second close to unity.

6.
J Phys Chem B ; 128(11): 2773-2781, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38461422

RESUMEN

1H spin-lattice relaxation experiments have been performed for water and glycerol/water solutions of H2N-Fe3O4 superparamagnetic nanoparticles (NPs) of about 7 nm diameter. The experiments encompass a broad frequency range covering 3 orders of magnitude, from 10 kHz to 10 MHz (referring to 1H resonance frequency), and have been performed in the temperature range from 298 to 313 K, varying the concentration of the superparamagnetic species. This extensive dataset has been used for twofold purposes. The first one is to serve as a challenge for thorough tests of theoretical models describing nuclear relaxation in solutions of superparamagnetic NPs, depending on their magnetic properties and dynamics of the solvent molecules. The challenge is posed by the wish to reproduce the data in a broad range of magnetic fields (not only at high fields) and by the need to explain the differences in the relaxation scenarios for water and glycerol/water solutions by varying only the solvent parameters. The second purpose is to get insights into the magnetic properties (electronic relaxation properties) of the nanoparticles due to their high applicational potential.

7.
J Phys Chem B ; 128(6): 1535-1543, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295281

RESUMEN

1H spin-lattice nuclear magnetic resonance (NMR) relaxation experiments have been performed for water dispersions of functionalized silica nanoparticles of diameters of 25 and 45 nm. The experiments have been performed in a broad frequency range spanning 3 orders of magnitude, from 10 kHz to 10 MHz, versus temperature, from 313 to 263 K. On the basis of the data, two-dimensional translation diffusion (diffusion close to the nanoparticle surface within a layer of the order of a few diameters of water molecules) has been revealed. The translational correlation times as well as the residence life times on the nanoparticle surface have been determined. It has turned out that the residence lifetime is temperature-independent and is on the order of 5 × 10-6 s for the smaller nanoparticles and by about a factor of 3 longer for the larger ones. The translational correlation time for the case of 25 nm nanoparticles is also temperature-independent and yields about 6 × 10-7 s, while for the dispersion of the larger nanoparticles, the correlation times changed from about 8 × 10-7 s at 313 K to about 1.2 × 10-6 s at 263 K. In addition to the quantitative characterization of the two-dimensional translation diffusion, correlation times associated with bound water molecules have been determined. The studies have also given insights into the population of the bound and diffusing water on the surface water fractions.

8.
J Phys Chem B ; 127(41): 8950-8960, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37812396

RESUMEN

Water dynamics in mesoporous dextran hydrogel micro/nanoparticles was investigated by means of nuclear magnetic resonance (NMR) techniques. High-resolution 1H NMR spectra and pulsed field gradient (PFG) NMR diffusometry measurements obtained on swollen state dextran micro/nanogel revealed the existence of different fractions of water molecules based on their interaction with the gel matrix. In addition to the translational diffusion of bulk water, two more diffusion processes characterized with self-diffusion coefficients 1 and 2 orders of magnitude smaller than that of bulk water were identified. 1H spin-lattice relaxation dispersion profiles obtained for a broad range of Larmor frequencies using fast field cycling (FFC) and conventional NMR relaxometry techniques allowed us to further clarify the mechanisms of molecular motion. According to the water proton pool fractions and associated self-diffusion coefficients, it is shown that the relaxation contribution associated with reorientation-mediated translational motions (RMTDs) dominates the relaxation dispersion observed at intermediate frequencies. At very low frequencies, the spin-lattice relaxation rate is dominated by the slow solid-gel dynamics probed by the water molecules interacting with the pores' surface hydroxyl groups due to the rapid chemical exchange between surface hydroxyl groups and free water. The correlation time for the thumbling-like motion of the dextran gel was found to be in the submillisecond range. The values of the self-diffusion and coherence lengths associated with motion of water molecules interacting with the solid-gel particles are consistent with the particle size and pore size distributions obtained for the studied dextran gels.

9.
ACS Appl Mater Interfaces ; 15(33): 39417-39425, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37555825

RESUMEN

Ionic liquids (ILs), revealing a tendency to form self-assembled nanostructures, have emerged as promising materials in various applications, especially in energy storage and conversion. Despite multiple reports discussing the effect of structural factors and external thermodynamic variables on ion organization in a liquid state, little is known about the charge-transport mechanism through the self-assembled nanostructures and how it changes at elevated pressure. To address these issues, we chose three amphiphilic ionic liquids containing the same tetra(alkyl)phosphonium cation and anions differing in size and shape, i.e., thiocyanate [SCN]-, dicyanamide [DCA]-, and tricyanomethanide [TCM]-. From ambient pressure dielectric and mechanical experiments, we found that charge transport of all three examined ILs is viscosity-controlled at high temperatures. On the other hand, ion diffusion is much faster than structural dynamics in a nanostructured supercooled liquid (at T < 210 ± 3 K), which constitutes the first example of conductivity independent from viscosity in neat aprotic ILs. High-pressure measurements and MD simulations reveal that the created nanostructures depend on the anion size and can be modified by compression. For small anions, increasing pressure shapes immobile alkyl chains into lamellar-type phases, leading to increased anisotropic diffusivity of anions through channels. Bulky anions drive the formation of interconnected phases with continuous 3D curvature, which render ion transport independent of pressure. This work offers insight into the design of high-density electrolytes with percolating conductive phases providing efficient ion flow.

10.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903475

RESUMEN

1H spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10-6 s, 10-7 s and 10-8 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties. It has been shown that dynamic processes in different kinds of Haribo jelly are similar (this can be treated as a sign of their quality and authenticity) and that the fraction of confined water molecules is reduced with increasing temperature. Two groups of Vidal jelly have been identified. For the first one, the parameters (dipolar relaxation constants and correlation times) match those for Haribo jelly. For the second group including cherry jelly, considerable differences in the parameters characterizing their dynamic properties have been revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA