Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37555198

RESUMEN

Magnetic Resonance Imaging (MRI) is a medical imaging modality that allows for the evaluation of soft-tissue diseases and the assessment of bone quality. Preoperative MRI volumes are used by surgeons to identify defected bones, perform the segmentation of lesions, and generate surgical plans before the surgery. Nevertheless, conventional intraoperative imaging modalities such as fluoroscopy are less sensitive in detecting potential lesions. In this work, we propose a 2D/3D registration pipeline that aims to register preoperative MRI with intraoperative 2D fluoroscopic images. To showcase the feasibility of our approach, we use the core decompression procedure as a surgical example to perform 2D/3D femur registration. The proposed registration pipeline is evaluated using digitally reconstructed radiographs (DRRs) to simulate the intraoperative fluoroscopic images. The resulting transformation from the registration is later used to create overlays of preoperative MRI annotations and planning data to provide intraoperative visual guidance to surgeons. Our results suggest that the proposed registration pipeline is capable of achieving reasonable transformation between MRI and digitally reconstructed fluoroscopic images for intraoperative visualization applications.

2.
IEEE Trans Med Robot Bionics ; 4(4): 901-909, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37790985

RESUMEN

We present an autonomous robotic spine needle injection system using fluoroscopic image-based navigation. Our system includes patient-specific planning, intra-operative image-based 2D/3D registration and navigation, and automatic robot-guided needle injection. We performed intensive simulation studies to validate the registration accuracy. We achieved a mean spine vertebrae registration error of 0.8 ± 0.3 mm, 0.9 ± 0.7 degrees, mean injection device registration error of 0.2 ± 0.6 mm, 1.2 ± 1.3 degrees, in translation and rotation, respectively. We then conducted cadaveric studies comparing our system to an experienced clinician's free-hand injections. We achieved a mean needle tip translational error of 5.1 ± 2.4 mm and needle orientation error of 3.6 ± 1.9 degrees for robotic injections, compared to 7.6 ± 2.8 mm and 9.9 ± 4.7 degrees for clinician's free-hand injections, respectively. During injections, all needle tips were placed within the defined safety zones for this application. The results suggest the feasibility of using our image-guided robotic injection system for spinal orthopedic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA