Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 146(10)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652582

RESUMEN

Penn State University is developing a pediatric total artificial heart (TAH) as a bridge-to-transplant device that supports infants and small children with single ventricle anomalies or biventricular heart failure to address high waitlist mortality rates for pediatric patients with severe congenital heart disease (CHD). Two issues with mechanical circulatory support devices are thrombus formation and thromboembolic events. This in vitro study characterizes flow within Penn State's pediatric total artificial heart under physiological operating conditions. Particle image velocimetry (PIV) is used to quantify flow within the pump and to calculate wall shear rates (WSRs) along the internal pump surface to identify potential thrombogenic regions. Results show that the diastolic inflow jets produce sufficient wall shear rates to reduce thrombus deposition potential along the inlet side of the left and right pumps. The inlet jet transitions to rotational flow, which promotes wall washing along the apex of the pumps, prevents flow stasis, and aligns flow with the outlet valve prior to systolic ejection. However, inconsistent high wall shear rates near the pump apex cause increased thrombogenic potential. Strong systolic outflow jets produce high wall shear rates near the outlet valve to reduce thrombus deposition risk. The right pump, which has a modified outlet port angle to improve anatomical fit, produces lower wall shear rates and higher thrombus susceptibility potential (TSP) compared to the left pump. In summary, this study provides a fluid dynamic understanding of a new pediatric total artificial heart and indicates thrombus susceptibility is primarily confined to the apex, consistent with similar pulsatile heart pumps.


Asunto(s)
Corazón Artificial , Hidrodinámica , Humanos , Reología , Niño , Trombosis , Modelos Cardiovasculares
2.
J Biomech Eng ; 144(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34897373

RESUMEN

For children born with a single functional ventricle, the Fontan operation bypasses the right ventricle by forming a four-way total cavopulmonary connection and adapts the existing ventricle for the systemic circulation. However, upon reaching adulthood, many Fontan patients exhibit low cardiac output and elevated venous pressure, eventually requiring a heart transplantation. Despite efforts in developing a new device or using an existing device for failing Fontan support, there is still no Food and Drug Administration-approved device for subpulmonary support. Penn State University is developing a hydrodynamically levitated Fontan circulatory assist device (FCAD) for bridge-to-transplant or destination therapy. The hemodynamics within the FCAD, at both steady and patient averaged pulsatile conditions for three physiological pump operating conditions, were quantified using particle image velocimetry (PIV) to determine the velocity magnitudes and Reynolds normal and shear stresses within the device. Data were acquired at three planes (0 mm and ±25% of the radius) for the inferior and superior vena cavae inlets and the pulmonary artery outlet. The inlets had a blunt velocity profile that became skewed toward the collecting volute as fluid approached the rotor. At the outlet, regardless of the flow condition, a high-velocity jet exited the volute and moved downstream in a helical pattern. Turbulent stresses observed at the volute exit were influenced by the rotor's rotation. Regardless of inlet conditions, the pump demonstrated advantageous behavior for clinical use with a predictable flow field and a low risk of platelet adhesion and hemolysis based on calculated wall shear rates and turbulent stresses, respectively.


Asunto(s)
Procedimiento de Fontan , Corazón Auxiliar , Adulto , Niño , Procedimiento de Fontan/métodos , Ventrículos Cardíacos , Hemodinámica , Humanos , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA