Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(2): 023601, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30085738

RESUMEN

Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. We report the observation of critical thermalization in a three dimensional ensemble of ∼10^{6} electronic spins coupled via dipolar interactions. By controlling the spin states of nitrogen vacancy color centers in diamond, we observe slow, subexponential relaxation dynamics and identify a regime of power-law decay with disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions.

2.
Nature ; 500(7460): 54-8, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23903748

RESUMEN

Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.


Asunto(s)
Fibroblastos/citología , Nanopartículas del Metal/química , Nanodiamantes/química , Termómetros , Termometría/instrumentación , Termometría/métodos , Supervivencia Celular , Color , Oro , Humanos , Nanotecnología/instrumentación , Nitrógeno , Análisis de la Célula Individual , Temperatura
3.
Science ; 336(6086): 1283-6, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22679092

RESUMEN

Stable quantum bits, capable both of storing quantum information for macroscopic time scales and of integration inside small portable devices, are an essential building block for an array of potential applications. We demonstrate high-fidelity control of a solid-state qubit, which preserves its polarization for several minutes and features coherence lifetimes exceeding 1 second at room temperature. The qubit consists of a single (13)C nuclear spin in the vicinity of a nitrogen-vacancy color center within an isotopically purified diamond crystal. The long qubit memory time was achieved via a technique involving dissipative decoupling of the single nuclear spin from its local environment. The versatility, robustness, and potential scalability of this system may allow for new applications in quantum information science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...