Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 51(9): 5313-24, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22515515

RESUMEN

Scheelite-type compounds with the general formula (A1,A2)(n)[(B1,B2)O(4)](m) (2/3 ≤ n/m ≤ 3/2) are the subject of large interest owing to their stability, relatively simple preparation, and optical properties. The creation of cation vacancies (□) in the scheelite-type framework and the ordering of A cations and vacancies can be a new factor in controlling the scheelite-type structure and properties. For a long time, cation-deficient Nd(3+):M(2/7)Gd(4/7)□(1/7)MoO(4) (M = Li, Na) compounds were considered as potential lasers with diode pumping. They have a defect scheelite-type 3D structure (space group I4(1)/a) with a random distribution of Li(+)(Na(+)), Gd(3+), and vacancies in the crystal. A Na(2/7)Gd(4/7)MoO(4) single crystal with scheelite-type structure has been grown by the Czochralski method. Transmission electron microscopy revealed that Na(2/7)Gd(4/7)MoO(4) has a (3 + 2)D incommensurately modulated structure. The (3 + 2)D incommensurately modulated scheelite-type cation-deficient structure of Na(2/7)Gd(4/7)MoO(4) [super space group I4 (α-ß0,ßα0)00] has been solved from single-crystal diffraction data. The solution of the (3 + 2)D incommensurately modulated structure revealed the partially disordered distribution of vacancies and Na and Gd cations. High-temperature conductivity measurements performed along the [100] and [001] orientation of the single crystal revealed that the conductivity of Na(2/7)Gd(4/7)MoO(4) at T = 973 K equals σ = 1.13 × 10(-5) Ω(-1) cm(-1).

2.
Nanotechnology ; 22(27): 275718, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21613739

RESUMEN

The formation of silica nano- and microparticles has been studied during growth by the modified Stöber-Fink-Bohn (SFB) method. It has been experimentally found that the density and fractal structure of particles vary with size as they grow from 70 to 2200 nm. We propose a model of particle structure which is a dense primary particle core and is composed of concentric secondary particle shells terminating in dense primary particle layers.

3.
J Nanosci Nanotechnol ; 11(10): 8986-93, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22400291

RESUMEN

The structures of palladium and palladium alloys thin films deposited from organic electrolytes onto metallic substrates by electroless plating method have been investigated. The coatings are dense, pore-free 0.005-1 microm thick films with high adhesive strength to the substrate surface. EDX, XRD, SEM and TEM methods were used to determine the composition and structure of alloy coatings of the following binary systems: Pd-Au, Pd-Ag, Pd-Ni, Pd-Pb, and ternary system Pd-Au-Ni. The coatings of Pd-Au, Pd-Ag and Pd-Ni have a solid solution structure, whereas Pd-Pb is intermetallic compound. It has been found that the deposited films consist of nanocrystalline grains with sizes in the range of 11-35 nm. Scanning and transmission electron microscopy investigations reveal the existence of clusters formed by nanocrystalline grains. The origin for the formation of nanocrystalline structures of coating films is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...