Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Chem Neurosci ; 11(3): 427-435, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31898886

RESUMEN

Development of positron emission tomography (PET) imaging agents capable of quantifying tau aggregates in neurodegenerative disorders such as Alzheimer's disease (AD) is of enormous importance in the field of dementia research. The aim of the present study was to conduct first-in-man imaging studies with the potential novel tau imaging agent [18F]N-methyl lansoprazole ([18F]NML). Herein we report validation of the synthesis of [18F]NML for clinical use by labeling the trifluoromethyl group via radiofluorination of the corresponding gem-difluoro enol ether precursor. This is the first use of this method for clinical production of PET radiotracers and confirmed that it can be readily implemented at multiple production facilities to provide [18F]NML in good noncorrected radiochemical yield (3.4 ± 1.5 GBq, 4.6% ± 2.6%) and molar activity (120.1 ± 186.3 GBq/µmol), excellent radiochemical purity (>97%), and suitable for human use (n = 15). With [18F]NML in hand, we conducted rodent biodistribution, estimates of human dosimetry, and preliminary evaluation of [18F]NML in human subjects at two imaging sites. Healthy controls (n = 4) and mildly cognitively impaired (MCI) AD patients (n = 6) received [18F]NML (tau), [18F]AV1451 (tau), and [18F]florbetaben or [18F]florbetapir (amyloid) PET scans. A single progressive supranuclear palsy (PSP) patient also received [18F]NML and [18F]AV1451 PET scans. [18F]NML showed good brain uptake, reasonable pharmacokinetics, and appropriate imaging characteristics in healthy controls. The mean ± SD of the administered mass of [18F/19F]NML was 2.01 ± 2.17 µg (range, 0.16-8.27 µg) and the mean administered activity was 350 ± 62 MBq (range, 199-403 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the 11 subjects, and no significant changes in vital signs were observed. However, despite high affinity for tau in vitro, brain retention in MCI/AD and PSP patients was low, and there was no evidence of specific signals in vivo that corresponded to tau. Although it is still unclear why clinical translation of the radiotracer was unsuccessful, we nevertheless conclude that further development of [18F]NML as a tau PET imaging agent is not warranted at this time.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina/farmacología , Disfunción Cognitiva/diagnóstico por imagen , Glicoles de Etileno/farmacología , Lansoprazol/farmacología , Distribución Tisular/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos
3.
Ann N Y Acad Sci ; 1153: 240-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19236346

RESUMEN

The idea that alterations in the brain immunomodulation are critical for Alzheimer's disease (AD) pathogenesis provides the most integrative view on this cognitive disorder, considering that converging research lines have revealed the involvement of inflammatory processes in AD. We have proposed the damage signal hypothesis as a unifying scheme in that release of endogenous damage/alarm signals, in response to accumulated cell distress (dyslipidemia, vascular insults, head injury, oxidative stress, iron overload, folate deficiency), is the earliest triggering event in AD, leading to activation of innate immunity and the inflammatory cascade. Inflammatory cytokines play a dual role, either promoting neurodegeneration or neuroprotection. This equilibrium is shifted toward the neurodegenerative phenotype upon the action of several risk factors that trigger innate damage signals that activate microglia and the release of tumor necrosis factor-alpha, interleukin-6, and some trophic factors. In this neuroimmunomodulatory hypothesis we integrate different risk factors with microaglial activation and the resulting neuronal alterations and hyperphosphorylations of tau protein. The progression of AD, with slowly increasing damage in brain parenchyma preceding the onset of symptoms, suggests that tissue distress triggering damage signals drives neuroinflammation. These signals via toll-like receptors, receptors for highly glycosylated end products, or other glial receptors activate sensors of the native immune system, inducing the anomalous release of cytokines and promoting the neurodegenerative cascade, a hallmark of brain damage that correlates with cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Sistema Inmunológico/inmunología , Sistema Nervioso/inmunología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Antiinflamatorios/uso terapéutico , Diseño de Fármacos , Humanos , Inmunidad Innata/inmunología
4.
J Alzheimers Dis ; 14(3): 329-33, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18599959

RESUMEN

Virtually none of the hypotheses on Alzheimer's disease (AD) pathogenesis address the earliest events that trigger the molecular alterations that precede cerebral degeneration and account for the diversity of risk factors that converge on a well-defined disease phenotype. We propose that long-term activation of the innate immune system by an individual array of risk factors constitutes a unifying mechanism leading to the triggering of an inflammatory cascade that converges in cytoskeletal alterations (tau aggregation, paired helical filament formation) as a previously hypothesized final common pathway in AD. The key pathogenic phenomena consist in the long-term, maladaptive activation of innate immunity-triggering receptors--such as the toll-like and advanced glycation end-products receptors, and others located in the microglial membrane--by seemingly heterogeneous risk factors such as hyperlipidemia, hyperglycemia, oxidative stress, head injury, amyloid oligomers, etc. Our hypothesis provides a unifying mechanism that explains both the diversity of risk factors acting over long periods of time and the individual response to such insults. This formulation is amenable to both empirical testing and implementation into therapeutic strategies that may lead to effective prevention of AD as well as other disorders in which impaired regulation of the innate immunity is the unifying cause of the condition.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Transducción de Señal , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Productos Finales de Glicación Avanzada/inmunología , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hiperglucemia/metabolismo , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Estrés Oxidativo/fisiología , Factores de Riesgo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA