Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195789

RESUMEN

Mastitis is an inflammation of the mammary gland that can be caused by various factors, including biological, chemical, mechanical, or physical. Microbiological culture, DNA techniques, and high-throughput next-generation sequencing have been used to identify mastitis-causing pathogens in various animal species. However, little is known about microbiota and microbiome changes linked to yak milk mastitis. This study aimed to characterize the milk microbiota of healthy and mastitis-infected yaks using full-length 16S rRNA sequencing. The results showed that the bacterial microbiota comprises 7 phyla, 9 classes, 20 orders, 39 families, 59 genera, and 72 species. Proteobacteria and Firmicutes were the predominant microbial communities, with lower abundances of Bacteroidota, Actinobacteriota, Acidobacteriota, and other minor groupings also observed. Proteobacteria dominated the clinical and subclinical mastitis groups (95.36% and 89.32%, respectively), in contrast to the healthy group (60.17%). Conversely, Firmicutes were more common in the healthy group (39.7%) than in the subclinical and clinical mastitis groups (10.49% and 2.92%, respectively). The predominant organisms found in the healthy group were Leuconostoc mesenteroides, Lactococcus piscium, Carnobacterium maltaromaticum, and Lactococcus raffinolactis. Low abundances of Staphylococcus aureus species were found in both subclinical and clinical mastitis groups, with Moraxella osloensis and Psychrobacter cibarius dominating the subclinical mastitis group and Pseudomonas fluorescens dominating the clinical mastitis group. An alpha diversity study revealed that the healthy group had a higher microbial diversity than the clinical and subclinical mastitis groups. According to beta-diversity analysis, the principal coordinate analysis identified that mastitis-infected samples significantly differed from healthy ones. The milk microbiota of healthy yaks is more varied, and specific prominent taxa within various groups can act as marker microorganisms for mastitis risk. The genera Leuconostoc and Lactococcus are promising candidates for creating probiotics.

2.
Microb Pathog ; 194: 106799, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025382

RESUMEN

Pasturella multocida (P. multocida), a gram-negative bacterium, has long been a focus of interest in animal health because of its capacity to cause different infections, including hemorrhagic septicemia. Yaks, primarily found in high-altitude environments, are among the several livestock animals affected by these bacteria. Yaks are essential to the socioeconomic life of the people who depend on them since they are adapted to the cold and hypoxic conditions of highland environments. Nevertheless, these terrains exhibit a greater incidence of P. multocida despite the severe environmental complications. This predominance has been linked to the possible attenuation of the yak's immunological responses in such circumstances and the evolution of some bacterial strains to favor survival in the respiratory passages of the animals. Moreover, these particular strains threaten other cattle populations that interact with yaks, which might result in unanticipated outbreaks in areas previously thought to be low risk. Considering these findings, designing and executing preventative and control strategies suited explicitly for these distinct biological environments is imperative. Through such strategies, yaks' health will be guaranteed, and a larger bovine population will be safeguarded against unanticipated epidemics. The current review provides thorough insights that were previously dispersed among several investigations. Its distinct method of connecting the ecology of yaks with the dynamics of infection offers substantial background information for further studies and livestock management plans.

3.
Ecotoxicol Environ Saf ; 283: 116781, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067074

RESUMEN

Aflatoxin B1 (AFB1) is recognized as the most toxic mycotoxin, widely present in nature and known to specifically target the liver, leading to severe consequences to animal and human health. The mechanisms underlying AFB1-induced hepatotoxicity involve oxidative stress and apoptosis. Radix Bupleuri (RB) and its extracts (RBE), traditional Chinese herbs with a rich history spanning over 2000 years, have been reported to possess hepatoprotective properties. Nevertheless, the impact of RBE on AFB1-induced liver injury remains to be fully elucidated. The current study utilized Pekin ducks as experimental models to explore the effects of RBE on AFB1-induced liver injury both in vitro and in vivo. In vitro findings indicated that RBE mitigated AFB1-induced cytotoxicity, improved primary duck hepatocytes (PDHs) morphology, and reduced intracellular reactive oxygen species (ROS) levels. In vivo experiments demonstrated that: I) RBE alleviated the growth inhibitory caused by AFB1, as evidenced by improved final body weight and weight gain. II) AFB1 led to significant alterations in serum biochemical parameters (AST, ALT, TP, and ALB) and liver lesions attenuated by RBE supplementation at 2.5 g/kg. III) RBE significantly mitigated oxidative stress induced by AFB1. IV) AFB1-induced changes in mRNA and protein levels associated with oxidative stress and apoptosis were counteracted by RBE. In conclusion, our results suggest that RBE offers protection against AFB1-induced liver injury in ducks, primarily through its antioxidative and anti-apoptotic properties. These findings indicate the potential of RBE in preventing and treating AFB1 poisoning.

4.
Ecotoxicol Environ Saf ; 254: 114731, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36905849

RESUMEN

Microbes play a crucial role in maintaining health by aiding in digestion, regulating the immune system, producing essential vitamins, and preventing the colonization of harmful bacteria. The stability of the microbiota is, therefore, necessary for overall well-being. However, several environmental factors can negatively affect the microbiota, including exposure to industrial waste, i.e., chemicals, heavy metals, and other pollutants. Over the past few decades, industries have grown significantly, but the wastewater from those industries has seriously harmed the environment and the health of living beings both locally and globally. The current study investigated the effects of salt-contaminated water exposure on gut microbiota in chickens. According to our findings, amplicon sequencing showed 453 OTUs across control and salt-contaminated water exposure groups. Proteobacteria, Firmicutes, and Actinobacteriota were the most dominant phyla in the chickens regardless of treatment. However, exposure to salt-contaminated water resulted in a remarkable decline in gut microbial diversity. While, the beta diversity revealed substantial differences in major gut microbiota components. Moroever, microbial taxonomic investigation indicated that the proportions of one bacterial phylum and nineteen bacterial genera significantly decreased. Also, the levels of one bacterial phylum and thirty three bacterial genera markedly increased under salt-contaminated water exposure, which indicates a disruption in gut microbial homeostasis. Hence the current study provides a basis to explore the effects of salt-contaminated water exposure on the health of vertebrate species.


Asunto(s)
Microbioma Gastrointestinal , Animales , Pollos/microbiología , Disbiosis , Bacterias/genética , Cloruro de Sodio , Cloruro de Sodio Dietético , Agua , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...