Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-34529081

RESUMEN

Cellular import of D-xylose, the second most abundant sugar in typical lignocellulosic biomass, has been evidenced to be an energy-depriving process in bacterial biocatalysts. The sugar facilitator of Zymomonas mobilis, Glf, is capable of importing xylose at high rates without extra energy input, but is inhibited by D-glucose (the primary biomass sugar), potentially limiting the utility of this transporter for fermentation of sugar mixtures derived from lignocellulose. In this work we developed an Escherichia coli platform strain deficient in glucose and xylose transport to facilitate directed evolution of Glf to overcome glucose inhibition. Using this platform, we isolated nine Glf variants created by both random and site-saturation mutagenesis with increased xylose utilization rates ranging from 4.8-fold to 13-fold relative to wild-type Glf when fermenting 100 g l-1 glucose-xylose mixtures. Diverse point mutations such as A165M and L445I were discovered leading to released glucose inhibition. Most of these mutations likely alter sugar coordinating pocket for the 6-hydroxymethyl group of D-glucose. These discovered glucose-resistant Glf variants can be potentially used as energy-conservative alternatives to the native sugar transport systems of bacterial biocatalysts for fermentation of lignocellulose-derived sugars.


Asunto(s)
Zymomonas , Escherichia coli/genética , Fermentación , Glucosa , Azúcares , Xilosa , Zymomonas/genética
2.
Appl Microbiol Biotechnol ; 103(21-22): 9001-9011, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31641813

RESUMEN

Optimization of export mechanisms for valuable extracellular products is important for the development of efficient microbial production processes. Identification of the relevant export mechanism is the prerequisite step for product export optimization. In this work, we identified transporters involved in malate export in an engineered L-malate-producing Escherichia coli strain using cheminformatics-guided genetics tests. Among all short-chain di- or tricarboxylates with known transporters in E. coli, citrate, tartrate, and succinate are most chemically similar to malate as estimated by their molecular signatures. Inactivation of three previously reported transporters for succinate, tartrate, and citrate, DcuA, TtdT, and CitT, respectively, dramatically decreased malate production and fermentative growth, suggesting that these transporters have substrate promiscuity for different short-chain organic acids and constitute the major malate export system in E. coli. Malate export deficiency led to an increase in cell sizes and accumulation of intracellular metabolites related to malate metabolism.


Asunto(s)
Transporte Biológico/genética , Proteínas Portadoras/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Malatos/metabolismo , Proteínas Bacterianas/genética , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Escherichia coli/genética , Fermentación/genética , Ingeniería Genética , Transportadores de Anión Orgánico/genética , Ácido Succínico/metabolismo , Tartratos/metabolismo
3.
Biotechnol Bioeng ; 116(8): 2074-2086, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038200

RESUMEN

Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Xilosa/metabolismo , Represión Catabólica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fermentación , Ingeniería Metabólica , Proteínas de Transporte de Monosacáridos/genética , Mutación , Ácido Succínico/metabolismo , Xilosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...