Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 189(4): 1005-1015, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30850885

RESUMEN

We utilized natural experiment opportunities presented by differential conditions (presence/absence of seabirds and invasive species) on cays in the Bahamas to study whether interisland variations in food resources contributed to gigantism in Allen Cays Rock Iguanas (Cyclura cychlura inornata). We analyzed the stable carbon (δ13C) and nitrogen (δ15N) isotope values from iguana tissues and resources from each island food web to test the predictions that (1) food webs on islands with seabirds exhibit the influence of marine subsidies from seabird guano, whereas those from non-seabird islands do not, and (2) size differences in iguanas among cays were due to either (a) supplemental food availability from mice and/or seabird carcasses killed by barn owls (Tyto alba) and/or (b) access to more nutrient-rich vegetation fertilized by seabird guano. Food web components from the seabird island (Allen Cay) had 5-9‰ higher δ15N values than those on the other cays and Allen Cay plants contained nearly two times more nitrogen. Bayesian stable isotope mixing models indicated that C3 plants dominated iguana diets on all islands and showed no evidence for consumption of mice or shearwaters. The iguanas on Allen Cay were ~ 2 times longer (48.3 ± 11.6 cm) and ~ 6 times heavier (5499 ± 2847 g) than iguanas on other cays and this was likely from marine-derived subsidies from seabird guano which caused an increase in nitrogen concentration in the plants and a resultant increase in the δ15N values across the entire food web relative to non-seabird islands.


Asunto(s)
Tamaño Corporal , Iguanas , Animales , Bahamas , Teorema de Bayes , Especies Introducidas , Islas , Ratones
2.
Oecologia ; 188(4): 1273-1285, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30406821

RESUMEN

Evaluating long-term drivers of foraging ecology and population productivity is crucial for providing ecological baselines and forecasting species responses to future environmental conditions. Here, we examine the trophic ecology and habitat use of North Atlantic leatherback turtles (St. Croix nesting population) and investigate the effects of large-scale oceanographic conditions on leatherback foraging dynamics. We used bulk and compound-specific nitrogen isotope analysis of amino acids (CSIA-AA) to estimate leatherback trophic position (TP) over an 18-year period, compare these estimates with TP estimates from a Pacific leatherback population, and elucidate the pre-nesting habitat use patterns of leatherbacks. Our secondary objective was to use oceanographic indices and nesting information from St. Croix leatherbacks to evaluate relationships between trophic ecology, nesting parameters, and regional environmental conditions measured by the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. We found no change in leatherback TP over time and no difference in TP between Atlantic and Pacific leatherbacks, indicating that differences in trophic ecology between populations are an unlikely driver of the population dichotomy between Pacific and Atlantic leatherbacks. Isotope data suggested that St. Croix leatherbacks inhabit multiple oceanic regions prior to nesting, although, like their conspecifics in the Pacific, individuals exhibit fidelity to specific foraging regions. Leatherback nesting parameters were weakly related to the NAO, which may suggest that positive NAO phases benefit St. Croix leatherbacks, potentially through increases in resource availability in their foraging areas. Our data contribute to the understanding of leatherback turtle ecology and potential mechanistic drivers of the dichotomy between populations of this protected species.


Asunto(s)
Especies en Peligro de Extinción , Tortugas , Animales , Ecosistema , Océanos y Mares , Islas Virgenes de los Estados Unidos
3.
Rapid Commun Mass Spectrom ; 31(22): 1903-1914, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28857312

RESUMEN

RATIONALE: The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ13 C) and nitrogen (Δ15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. METHODS: We overcame these constraints and determined the Δ13 C and Δ15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ13 C values) and nitrogen (δ15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. RESULTS: The mean (±SD) Δ13 C and Δ15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ13 C and Δ15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. CONCLUSIONS: For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach opens the door for future studies comparing different tissues, and relating SI ratios of captive to wild animals.


Asunto(s)
Animales Salvajes/fisiología , Animales de Zoológico/fisiología , Huesos/química , Piel/química , Tortugas/fisiología , Animales , Isótopos de Carbono/análisis , Modelos Lineales , Masculino , Espectrometría de Masas , México , Isótopos de Nitrógeno/análisis , Océano Pacífico
4.
J Anim Ecol ; 86(3): 694-704, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28075017

RESUMEN

Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues.


Asunto(s)
Ecosistema , Tortugas/fisiología , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Animales , México , Isótopos de Nitrógeno/análisis , Océano Pacífico , Tortugas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA