Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 249, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37170201

RESUMEN

Truffle cultivation has quickly grown in Europe and elsewhere as a consequence of the increase in the demand of the market. Thus the optimization of the protocols for the production of elite mycorrhized plants are also needed, keeping in consideration the economic and environmental sustainability. The suitability of two compost-based potting mixes to produce Quercus pubescens Willd. plants mycorrhized with the black Périgord truffle T. melanosporum Vittad. was tested as an alternative to the traditional potting mix used. The effects on mycorrhizal development and the morphometric assessment of the root and shoot system of the Q. pubescens seedlings were investigated eight months after the spore slurry inoculation in a glasshouse experiment. From the results obtained, the compost mix containing green organic residues from pruning and mowing (Mix 2) achieved better performance than the control and the potting mix based on composted municipal organic wastes, showing significantly higher mycorrhization percentage, root length, number of root tips, and root forks. In conclusion, a potting mix containing recycled green organic matter, which is readily available, cheap, and environmentally sustainable, can offer excellent mycorrhization performances and may be included in the mycorrhization process of downy oak seedlings with T. melanosporum under controlled conditions.


Asunto(s)
Micorrizas , Quercus , Suelo , Plantones
2.
Data Brief ; 42: 108100, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35402666

RESUMEN

The dataset presented in this article is related to the research paper titled "Dimensional and genetic characterization of the last oriental plane trees (Platanus orientalis L.) of historical sites in Lazio (central Italy)" (Ciaffi et al., 2022). Indeed, the molecular analyses reported in that article consisted in a comparison of Italian veteran plane trees with 12 certified accessions of P. orientalis, P. occidentalis and their hybrids P. acerifolia (4 individuals per species). First, LEAFY gene analyses allowed identifying 32 P. orientalis and two P. acerifolia in four sites of the province of Rome, confirming also that the two representative trees from the two gardens of the province of Viterbo belong to P. orientalis. Second, the use of Simple Sequence Repeat (SSR) and Inter Simple Sequence Repeat (ISSR) molecular markers provided useful information regarding the genetic relationships within and among all the historical sites. Owing to the use of SSR and ISSR molecular markers, a dataset of parameters related to the genetic diversity of the same plant material was obtained and presented in this article. For SSR markers, seven loci previously developed for P. occidentalis (Lang, 2010) and two specifically developed for P. orientalis (Rinaldi et al., 2019) were employed. For ISSR markers, DNA samples were amplified with eight primers before used for the determination of genetic stability of micro-propagated plantlets of P. acerifolia (Huang et al., 2009) and for the genetic characterization of plane trees within the formal gardens of Villa Lante of Bagnaia and Palazzo Farnese (Viterbo, Italy) (Ciaffi et al., 2018). To the best of our knowledge, this is the first report on the genetic diversity data for veteran oriental plane trees within heritage sites, which will offer helpful information for their management and conservation.

3.
Ecotoxicology ; 30(6): 1098-1107, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34110543

RESUMEN

Ulmus glabra is a deciduous tree with a wide distribution in the Eurosiberian region. The southernmost populations, in the Mediterranean area, are fragmented in mountain areas which act as a refugium. These small relict populations can act as sentinel of global change, including climate change and impacts of human activities such as air pollution. Besides, tropospheric ozone (O3) is an additional stress factor in the Mediterranean region affecting plant physiology and health. Moreover, oxidative stress caused by O3 could increase DNA damage in plants cells. U. glabra 4-year-old seedlings originated from a natural population growing in the Guadarrama mountain range (central Spain), were exposed in Open Top Chambers to four O3 treatments: charcoal filtered air, non-filtered air reproducing ambient levels, non-filtered air supplemented with 15 nl l-1 O3 and non- filtered air supplemented with 30 nl l-1 O3. Ozone effects on the DNA integrity through Comet assay were evaluated and eco-physiological responses were explored as well as. Comet assay showed a significant increase of DNA damage with increasing levels of O3 after only one-month exposure, when no eco-physiological symptoms of damage could be detected. Comet assay could thus be suggested as a predictive test to detect DNA damage induced in plants by other abiotic stresses as well as to identify tolerant and sensitive species or in preservation strategies of small relict populations. The discovery of a test for an early identification of stressed plants could be important to speed the selection of tolerant individuals for breeding programmes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ulmus , Contaminantes Atmosféricos/análisis , Preescolar , ADN/farmacología , Humanos , Ozono/toxicidad , Hojas de la Planta , España
4.
Sci Rep ; 11(1): 1549, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452300

RESUMEN

Site conditions and forest management affect dendrometric parameters of chestnut (Castanea sativa Mill.) coppices, but there is modest knowledge on the effect of stand dendrometric characters on physical and mechanical wood characteristics. The aim of this study was to verify these relationships in chestnut coppices that were 12-14 years old. Wood density, compression and bending strength, shrinkages were measured on shoots of five different stand in a vulcanic site in Monte Amiata (Central - Italy). Investigated stands differ in number of stools/ha and dominant height, diameter/basal area of the shoots. The main difference in the physical characters among the stands is density. The initial results of the study showed that physical, mechanical wood characters are more dependent by the shoot than by the site. There is a positive relationships between the number of stools/ha and density and a negative one among shoot dominant height and basal area with wood density. Spectroscopic profile by FTIR has not showed relevant differences among the stands. Wood anatomy has showed the breakpoint at cellular level.


Asunto(s)
Agricultura/métodos , Fagaceae/metabolismo , Fagaceae/fisiología , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Bosques , Italia , Árboles/crecimiento & desarrollo , Madera/análisis
5.
Data Brief ; 20: 1532-1536, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30263911

RESUMEN

The data presented in this article are related to the research article titled "Conservation of veteran trees within historical gardens (COVE): a case study applied to Platanus orientalis L. in central Italy" (Ciaffi et al., 2018) [1]. This article reports data on the composition of the substrates used in the different steps of Platanus orientalis micropropagation: establishment of in vitro culture, multiplication, elongation and rooting. Moreover, molecular data were used to assess the genetic fidelity of the micropropagated plants respect mother plants after three year of in vitro cultivation. Fifteen ISSR markers, used in "Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers" (Huang et al., 2009) [2] on P. acerifolia and in "Variant identification in Platanus occidentalis L. using SNP and ISSR markers" (Lee et al., 2012) [3] on P. occidentalis, were successfully employed in the present study on P. orientalis. The plant material was collected from the Renaissance garden of Villa Lante in Viterbo, Italy. It is envisioned that these data set will provide useful information for the conservation of veteran oriental plane trees of historical gardens.

6.
Front Plant Sci ; 7: 1168, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27574524

RESUMEN

Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The single cell gel electrophoresis (SCGE) assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L.) has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L.) was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with SCGE assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.

7.
Tree Physiol ; 31(12): 1335-55, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21911439

RESUMEN

Soil salinity is an important limiting factor to tree growth and productivity. Populus alba L. is a moderately salt-tolerant species and its natural populations are adapted to contrasting environments, thus providing genetic resources to identify key genes for tolerance to abiotic stress, such as salinity. To elucidate the molecular and genetic basis of variation for salinity tolerance in P. alba, we analyzed the short-term ecophysiological and transcriptome response to salinity. Two contrasting genotypes, 6K3, salt sensitive, and 14P11, salt tolerant, originating from North and South Italy, respectively, were challenged with salt stress (200 mM NaCl). Sodium accumulated in the leaves of salt-treated plants and its concentration increased with time. The net photosynthesis was strongly reduced by salinity in both genotypes, with 6K3 being significantly more affected than 14P11. The transcriptional changes in leaves were analyzed using cDNA microarrays containing about 7000 stress-related poplar expressed sequence tags (EST). A microarray experiment based on RNA pooling showed a number of salinity--regulated transcripts that markedly increased from 3 h to 3 days of salinity treatment. Thus, a detailed analysis was performed on replicated plants collected at 3 days, when ~20% of transcripts showed significant change induced by salinity. In 6K3, there were more genes with decreased expression than genes with increased expression, whereas such a difference was not found in 14P11. Most transcripts with decreased expression were shared between the two genotypes, whereas transcripts with increased expression were mostly regulated in a genotype-specific manner. The commonly decreased transcripts (71 genes) were functionally related to carbohydrate metabolism, energy metabolism and photosynthesis. These biological processes were consistent with the strong inhibition of photosynthesis, caused by salinity. The commonly increased transcripts (13 genes) were functionally related to primary metabolism and biosynthesis of proteins and macromolecules. The salinity-increased transcripts discriminated the molecular response of the two genotypes. In 14P11, the 21 genes specifically salinity-induced were related to stress response, cell development, cell death and catabolism. In 6K3, the 15 genes with salinity-increased expression were involved in protein biosynthesis, metabolism of macromolecules and cell organization and biogenesis. The difference in transcriptome response between the two genotypes could address the molecular basis of intra-specific variation of salinity tolerance in P. alba.


Asunto(s)
Populus/genética , Populus/fisiología , Salinidad , Estrés Fisiológico/genética , Transcripción Genética , Clorofila/metabolismo , Etiquetas de Secuencia Expresada , Fluorescencia , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genotipo , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis/genética , Hojas de la Planta/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sodio/metabolismo
8.
Am J Bot ; 97(6): e45-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21622457

RESUMEN

PREMISE OF THE STUDY: Tamarix plants are resistant to abiotic stresses and have become invasive in North America. Their taxonomy is troublesome, and few molecular makers are available to enable species identification or to track the spread of specific invasive genotypes. Transcriptome sequencing projects offer a potential source for the development of new markers. • METHODS AND RESULTS: Thirteen polymorphic simple sequence repeats (SSRs) markers derived from Expressed Sequence Tags (ESTs) from Tamarix hispida, T. androssowii, T. ramosissima, and T. albiflonum were identified and screened on 24 samples of T. africana to detect polymorphism. The number of alleles per locus ranged from two to eight, with an average of 4.3 alleles per locus, and the mean expected heterozygosity was 0.453. • CONCLUSIONS: Amplification products of these 13 loci were also generated for T. gallica. These new EST-SSR markers will be useful in genetic characterization of Tamarix, as additional tools for taxonomic clarification, and for studying invasive populations where they are a threat.

9.
Plant Physiol ; 131(1): 177-85, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529526

RESUMEN

Leaf expansion in the fast-growing tree, Populus x euramericana was stimulated by elevated [CO(2)] in a closed-canopy forest plantation, exposed using a free air CO(2) enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO(2)] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0-3) and late (LPI, 6-8) stages in development. Early and late effects of elevated [CO(2)] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO(2)] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO(2)]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO(2)] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO(2)] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO(2)].


Asunto(s)
Dióxido de Carbono/farmacología , Hojas de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Algoritmos , División Celular/efectos de los fármacos , División Celular/fisiología , Pared Celular/efectos de los fármacos , Pared Celular/fisiología , Vigor Híbrido/efectos de los fármacos , Vigor Híbrido/fisiología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Populus/efectos de los fármacos , Factores de Tiempo , Árboles/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...