Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Laryngoscope Investig Otolaryngol ; 5(3): 438-444, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596485

RESUMEN

OBJECTIVES/HYPOTHESIS: Sensorineural hearing loss is one of the most common human disorders, with increasing incidence in elderly patients, severely restricting normal activities, and lowering quality of life. The introduction of sound conditioning has the potential to activate auditory pathway plasticity and improve basal frequency hearing. Our objective was to evaluate the safety and efficacy of threshold sound conditioning (TSC). The null hypothesis in this study was that TSC does not have a significant effect on auditory threshold amelioration. METHODS: Pure tone audiometry (PTA) was performed and hearing thresholds were measured once at baseline, and a second time following TSC intervention. Data were analyzed using an intention-to treat design. RESULTS: The TSC group (78%) significantly differed from the control group (44%) on auditory threshold amelioration; P = .008091 in DV1, P = .000546 in DV2 by Scheffe's post hoc test. Female subjects (77%) showed a significant difference in DV1 from male subjects (47%); P = .025468 in DV1 by Scheffe's post hoc test. Older subjects (75%) showed no significant difference from younger subjects (53%); P = .139149 in DV1, P = .082920 in DV2 by Scheffe's post hoc test. CONCLUSIONS: We observed a significant improvement in a narrow band frequency threshold in this randomized controlled prospective clinical study in a broad range of subjects. These data have important clinical implications since there is no current long-term therapy for this widespread and growing disability. Additional physiologic, mechanistic, and molecular studies are necessary to fully elucidate the pathophysiology and mechanism of action of TSC. LEVEL OF EVIDENCE: 1a.

2.
J Neurochem ; 132(6): 642-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25581122

RESUMEN

The daily oscillations observed in most living organisms are endogenously generated with a period of 24 h, and the underlying structure of periodic oscillation is an autoregulatory transcription-translation feedback loop. The mechanisms of untranslated region (UTR)-mediated post-transcriptional regulation (e.g., mRNA degradation and internal ribosomal entry site (IRES)-mediated translation) have been suggested to fine-tune the expression of clock genes. Mouse Period3 (mPer3) is one of the paralogs of Period gene and its function is important in peripheral clocks and sleep physiology. mPer3 mRNA displays a circadian oscillation as well as a circadian phase-dependent stability, while the stability regulators still remain unknown. In this study, we identify three proteins - heterogeneous nuclear ribonucleoprotein (hnRNP) K, polypyrimidine tract-binding protein (PTB), and hnRNP D - that bind to mPer3 mRNA 3'-UTR. We show that hnRNP K is a stabilizer that increases the amplitude of circadian mPer3 mRNA oscillation and hnRNP D is a destabilizer that decreases it, while PTB exhibits no effect on mPer3 mRNA expression. Our experiments describe their cytoplasmic roles for the mRNA stability regulation and the circadian amplitude formation. Moreover, our mathematical model suggests a mechanism through which post-transcriptional mRNA stability modulation provides not only the flexibility of oscillation amplitude, but also the robustness of the period and the phase for circadian mPer3 expression. Mouse Period3 (mPer3) is one of well-known clock genes. We identified three 3'-UTR-binding proteins that modulate the mRNA stability, and they influenced to the amplitude of circadian mPer3 mRNA oscillation. Our mathematical model not only showed the relationship between mRNA stability and its oscillation profile but provided the molecular mechanism for the robustness of the period and the phase in circadian oscillation. hnK, heterogeneous nuclear ribonucleoprotein (hnRNP) K; hnD, hnRNP D; PTB, polypyrimidine tract-binding protein.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas Circadianas Period/biosíntesis , ARN Mensajero/fisiología , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Estabilidad Proteica , Procesamiento Postranscripcional del ARN/fisiología
3.
Nucleic Acids Res ; 39(20): 8901-14, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21785138

RESUMEN

Daily mRNA oscillations of circadian clock genes largely depend on transcriptional regulation. However, several lines of evidence highlight the critical role of post-transcriptional regulation in the oscillations of circadian mRNA oscillations. Clearly, variations in the mRNA decay rate lead to changes in the cycling profiles. However, the mechanisms controlling the mRNA stability of clock genes are not fully understood. Here we demonstrate that the turnover rate of mouse Period3 (mPer3) mRNA is dramatically changed in a circadian phase-dependent manner. Furthermore, the circadian regulation of mPer3 mRNA stability requires the cooperative function of 5'- and 3'-untranslated regions (UTRs). Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) binds to both 5'- and 3'-UTR and triggers enhancement of translation and acceleration of mRNA decay. We propose the phase-dependent translation coupled mRNA decay mediated by hnRNP Q as a new regulatory mechanism of the rhythmically regulated decay of mPer3 mRNA.


Asunto(s)
Ritmo Circadiano/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas Circadianas Period/genética , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Regulación hacia Abajo , Regulación de la Expresión Génica , Ratones , Células 3T3 NIH , Proteínas Circadianas Period/metabolismo
4.
Proc Natl Acad Sci U S A ; 103(42): 15392-7, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17021013

RESUMEN

Activating signal cointegrator-2 (ASC-2), a coactivator of multiple transcription factors that include retinoic acid receptor (RAR), associates with histone H3-K4 methyltranferases (H3K4MTs) MLL3 and MLL4 in mixed-lineage leukemia. Here, we show that mice expressing a SET domain mutant of MLL3 share phenotypes with isogenic ASC2+/- mice and that expression and H3-K4 trimethylation of RAR target gene RAR-beta2 are impaired in ASC-2-null mouse embryo fibroblasts (MEFs) or in MEFs expressing siRNAs against both MLL3 and MLL4. We also show that MLL3 and MLL4 are found in distinct ASC-2-containing complexes rather than in a common ASC-2 complex, and they are recruited to RAR-beta2 by ASC-2. In contrast, RAR-beta2 expression is intact in MEFs devoid of menin, a component of MLL1 and MLL2 H3K4MT complexes. These results suggest that ASC-2 confers target gene specificity to MLL3 and MLL4 H3K4MT complexes and that recruitment of H3K4MTs to their target genes generally involves interactions between integral components of H3K4MT complexes and transcription factors.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Sustancias Macromoleculares , Metilación , Ratones , Coactivadores de Receptor Nuclear , Fenotipo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo
5.
J Neurosci ; 26(35): 8999-9005, 2006 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-16943556

RESUMEN

Neurotransmitter release is modulated in an activity-dependent manner. We showed previously that repetitive stimulation of nicotinic acetylcholine receptor (nAChR) induced activity-dependent potentiation (ADP) of large dense-core vesicle (LDCV) exocytosis in chromaffin cells. Here we report that protein kinase C (PKC)-epsilon is critically involved in ADP. Stimulation of nAChR induced activation of PKC-epsilon, and inhibition of PKC-epsilon by expression of the dominant-negative mutant of PKC-epsilon (DN-PKC-epsilon) or short interfering (siRNA) against PKC-epsilon abolished ADP via decreasing the frequency and quantal size of fused vesicles without affecting basal exocytosis, suggesting that PKC-epsilon is specifically involved in ADP. Electron microscopy revealed that inhibition of PKC-epsilon disrupts activity-induced vesicle translocation required for ADP. We also suggest the involvement of myristoylated alanine-rich C kinase substrate (MARCKS), which is known as a downstream target of PKC-epsilon, in ADP of LDCV exocytosis. The level of phospho-MARCKS correlated with the time course of ADP and was reduced by transfection with DN-PKC-epsilon. Actin filament disassembly induced by MARCKS phosphorylation was also significantly blocked by transfection of DN-PKC-epsilon. Furthermore, knockdown of MARCKS by siRNA resulted in inhibition of ADP and reduction of the number of fused vesicles. Together, we provide evidence that ADP of LDCV exocytosis is regulated by PKC-epsilon and its downstream target MARCKS via modulating vesicle translocation.


Asunto(s)
Células Cromafines/fisiología , Exocitosis/fisiología , Proteína Quinasa C-epsilon/metabolismo , Actinas/química , Actinas/fisiología , Potenciales de Acción , Animales , Transporte Biológico/fisiología , Bovinos , Membrana Celular/metabolismo , Células Cromafines/metabolismo , Células Cromafines/ultraestructura , Activación Enzimática , Exocitosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Fosforilación , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Proteína Quinasa C-epsilon/genética , ARN Interferente Pequeño/farmacología , Receptores Nicotínicos/metabolismo
6.
J Biol Chem ; 281(28): 19100-6, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16684777

RESUMEN

Daily oscillations in mRNA levels are a general feature of most clock genes. Although mRNA oscillations largely depend on transcriptional regulation, it has been suggested that post-transcriptional controls also contribute to mRNA oscillations in Drosophila. Currently, however, there is no direct evidence for post-transcriptional regulation of mammalian clock genes. To investigate the roles of post-transcriptional regulations, we focused on the 3'-untranslated region (3'-UTR) of mouse Period3 (mPer3) mRNA, one of the clock genes. Insertion of the entire mPer3 3'-UTR downstream of a reporter gene resulted in a dramatic decrease in mRNA stability. Deletion and point mutation analyses led to the identification of critical sequences responsible for mRNA decay. To explore the effects of the mPer3 3'-UTR-mediated mRNA decay on circadian oscillations, we established NIH3T3 stable cell lines that express luciferase mRNA with wild-type or mutant mPer3 3'-UTR. Interestingly, a stabilizing mutation of 3'-UTR induced a significant alteration in the oscillation profile of luciferase mRNA. Above all, the peak time, during which the mRNAs reached their highest levels, was significantly delayed (for 12 h). In addition, the luciferase mRNA level with mutant 3'-UTR began to increase earlier than that in the presence of wild-type 3'-UTR. Consequently, luciferase mRNA with mutant 3'-UTR displayed oscillation patterns with a prolonged rising phase. Our results indicate that mPer3 3'-UTR-mediated mRNA decay plays an essential role in mRNA cycling and provide direct evidence for post-transcriptional control of circadian mRNA oscillations.


Asunto(s)
Regiones no Traducidas 3' , Ritmo Circadiano , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Línea Celular , Eliminación de Gen , Genes Reporteros , Humanos , Ratones , Datos de Secuencia Molecular , Oscilometría , Proteínas Circadianas Period , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
7.
Mol Cell Biol ; 23(10): 3583-92, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12724417

RESUMEN

Activating signal cointegrator 2 (ASC-2), a cancer-amplified transcriptional coactivator of nuclear receptors and many other transcription factors, contains two LXXLL-type nuclear receptor interaction domains. Interestingly, the second LXXLL motif is highly specific to the liver X receptors (LXRs). In cotransfection, DN2, an ASC-2 fragment encompassing this motif, exerts a potent dominant-negative effect on transactivation by LXRs, which is rescued by ectopic coexpression of the full-length ASC-2 but not by other LXXLL-type coactivators, such as SRC-1 and TRAP220. In contrast, DN2/m, in which the LXXLL motif is mutated to LXXAA to abolish the interactions with LXRs, is without any effect. Accordingly, expression of DN2, but not DN2/m, in transgenic mice results in phenotypes that are highly homologous to those previously observed with LXRalpha(-/-) mice, including a rapid accumulation of large amounts of cholesterol and down-regulation of the known lipid-metabolizing target genes of LXRalpha in the liver upon being fed a high-cholesterol diet. These results identify ASC-2 as a physiologically important transcriptional coactivator of LXRs and demonstrate its pivotal role in the liver lipid metabolism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Colesterol/metabolismo , Cromatina/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN , Genes Dominantes , Glutatión Transferasa/metabolismo , Humanos , Inmunohistoquímica , Receptores X del Hígado , Luciferasas/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Coactivadores de Receptor Nuclear , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Nucleares Huérfanos , Fenotipo , Pruebas de Precipitina , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Transcripción Genética , Transfección , Técnicas del Sistema de Dos Híbridos
8.
EMBO J ; 22(2): 292-303, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12514135

RESUMEN

The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas/química , Conformación Proteica , S-Adenosilmetionina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteína Metiltransferasas , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Alineación de Secuencia
9.
Mol Cell Biol ; 23(1): 140-9, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12482968

RESUMEN

Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, alpha/beta-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas de Transporte de Catión , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Sustancias Macromoleculares , Metilación , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coactivadores de Receptor Nuclear , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...