Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 111(7): e16361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924532

RESUMEN

PREMISE: The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS: In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS: The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS: The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.


Asunto(s)
Filogenia , Salix , Salix/anatomía & histología , Salix/clasificación , Salix/genética , Evolución Biológica , América del Norte , Canadá , Estados Unidos
2.
New Phytol ; 241(2): 911-925, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921572

RESUMEN

Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.


Asunto(s)
Magnoliopsida , Primula , Primula/genética , Genoma , Genómica , Magnoliopsida/genética , Cromosomas , Hibridación Genética
3.
Mol Ecol ; 32(1): 61-78, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761469

RESUMEN

The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᵀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of-function mutations in CYPᵀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms.


Asunto(s)
Magnoliopsida , Primula , Humanos , Femenino , Masculino , Evolución Biológica , Reproducción/genética , Primula/genética , Endogamia , Magnoliopsida/genética , Flores/genética
4.
New Phytol ; 237(2): 656-671, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210520

RESUMEN

Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.


Asunto(s)
Primula , Filogenia , Primula/genética , Estudio de Asociación del Genoma Completo , Biodiversidad , Especiación Genética
5.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143659

RESUMEN

Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?


Asunto(s)
Flores , Primula , Cromosomas , Flores/genética , Duplicación de Gen , Genómica , Humanos , Primula/genética
6.
Mol Phylogenet Evol ; 145: 106727, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899222

RESUMEN

Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ~17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) is controversial because recent phylogenetic studies have suggested they might not be reciprocally monophyletic. However, previous analyses have shown conflicting topologies and consistently poor support due to an initial rapid diversification of the tribe. We analysed restriction-site associated DNA sequencing (RADseq) data from nearly all species of the clade, combined with five Sanger-based markers (matK, ndhF, rps16, ETS-1f, ITS) sampled extensively within species. This approach allowed us to resolve deep and shallow relationships within Trichophoreae for the first time, despite an anomaly zone spanning several successive short branches that produced considerable gene tree incongruence. Analyses reveal a primary phylogenetic split of the tribe into two clades roughly corresponding to an East Asian-North American disjunction that dates back to the mid-Miocene, with both clades comprised of a mixture of reduced unispicate and larger taxa with highly compound inflorescences. Morphological characters traditionally used in the circumscription of Trichophoreae genera are shown to be homoplasious. Several of these characters correlate best with climatic conditions, with the most reduced species occurring in open habitats at high latitudes and altitudes. Close relatives with highly compound inflorescences are found in temperate or subtropical forest understories. Cypringlea and Oreobolopsis are deeply nested within Trichophorum, and we merge all three genera into a more broadly circumscribed Trichophorum. We also show that Scirpus filipes is another previously unrecognized East Asian species of Trichophorum with highly compound inflorescences.


Asunto(s)
Cyperaceae/clasificación , Teorema de Bayes , Biodiversidad , Cyperaceae/anatomía & histología , Cyperaceae/genética , ADN de Plantas/química , ADN de Plantas/metabolismo , ADN Ribosómico/química , ADN Ribosómico/metabolismo , Funciones de Verosimilitud , Filogenia , Filogeografía , Plastidios/genética , Análisis de Secuencia de ADN
7.
PeerJ ; 7: e7538, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579569

RESUMEN

For those familiar with boreal bogs and wet tundra, species of Eriophorum ("the cotton grasses") will undoubtedly represent some of the most striking and memorable taxa they have encountered. This small genus of 20 Holarctic sedge species (Cyperaceae) is remarkable because its inflorescences produce large, brilliantly white to rusty-red cottony masses when its flowers develop a perianth of highly elongated bristles after anthesis. In this study, we document the rediscovery of Eriophorum scabriculme, a narrow Vietnamese endemic known from only two collections made approximately 7 km apart near Sa Pa in Lào Cai Province over 75 years ago. Using plastid DNA sequences (matK, ndhF), embryology, and morphology, we test whether E. scabriculme is aligned within the Scirpo-Caricoid Clade (genus Khaosokia and tribes Cariceae, Dulichieae, Scirpeae, and Sumatroscirpeae) or the Ficinia Clade (Cypereae), and we determine whether its unique character combinations (≥10 elongated bristles, reduced sheathing basal leaves, 1-4 spikelets) could be evidence for a new genus or simply mark it as an unusual species within currently recognised genera. In addition, we document the discovery of seven new populations, and we extend its range westward to Lai Châu Province and southward in Lào Cai Province by more than 47 km. Our results demonstrate that Eriophorum scabriculme is best treated in the genus Trichophorum, thus re-circumscribing both genera and their limits with Scirpus s.str. In addition, we emend the description of Trichophorum scabriculme (Beetle) J.R.Starr, Lév.-Bourret & B.A. Ford, provide the first pictures and accurate illustration of the species, and assess its conservation status in Vietnam (VU, Vulnerable). Our study corroborates the fact that in such a diverse and taxonomically difficult family like the sedges, conspicuous characters like highly elongated bristles may be useful for dividing diversity, but they are no guarantee that the groups they mark are natural.

8.
Syst Biol ; 67(1): 94-112, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472459

RESUMEN

Despite the promise that molecular data would provide a seemingly unlimited source of independent characters, many plant phylogenetic studies are still based on only two regions, the plastid genome and nuclear ribosomal DNA (nrDNA). Their popularity can be explained by high-copy numbers and universal polymerase chain reaction (PCR) primers that make their sequences easily amplified and converted into parallel datasets. Unfortunately, their utility is limited by linked loci and limited characters resulting in low confidence in the accuracy of phylogenetic estimates, especially when rapid radiations occur. In another contribution on anchored phylogenomics in angiosperms, we presented flowering plant-specific anchored enrichment probes for hundreds of conserved nuclear genes and demonstrated their use at the level of all angiosperms. In this contribution, we focus on a common problem in phylogenetic reconstructions below the family level: Weak or unresolved backbone due to rapid radiations ($\leqslant $10 million years) followed by long divergence, using the Cariceae-Dulichieae-Scirpeae (CDS, Cyperaceae) clade as a test case. By comparing our nuclear matrix of 461 genes to a typical Sanger-sequence dataset consisting of a few plastid genes (matK, ndhF) and an nrDNA marker (ETS), we demonstrate that our nuclear data is fully compatible with the Sanger dataset and resolves short backbone internodes with high support in both concatenated and coalescence-based analyses. In addition, we show that nuclear gene tree incongruence is inversely proportional to phylogenetic information content, indicating that incongruence is mostly due to gene tree estimation error. This suggests that large numbers of conserved nuclear loci could produce more accurate trees than sampling rapidly evolving regions prone to saturation and long-branch attraction. The robust phylogenetic estimates obtained here, and high congruence with previous morphological and molecular analyses, are strong evidence for a complete tribal revision of CDS clade. The anchored hybrid enrichment probes used in this study should be similarly effective in other flowering plant groups.


Asunto(s)
Clasificación/métodos , Especiación Genética , Magnoliopsida/clasificación , Magnoliopsida/genética , Filogenia , Genoma de Planta , Reproducibilidad de los Resultados
9.
Evolution ; 72(2): 244-260, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29235117

RESUMEN

Flowers show important structural variation as reproductive organs but the evolutionary forces underlying this diversity are still poorly understood. In animal-pollinated species, flower shape is strongly fashioned by selection imposed by pollinators, which is expected to vary according to guilds of effective pollinators. Using the Antillean subtribe Gesneriinae (Gesneriaceae), we tested the hypothesis that pollination specialists pollinated by one functional type of pollinator have maintained more similar corolla shapes through time due to more constant and stronger selection constraints compared to species with more generalist pollination strategies. Using geometric morphometrics and evolutionary models, we showed that the corolla of hummingbird specialists, bat specialists, and species with a mixed-pollination strategy (pollinated by hummingbirds and bats; thus a more generalist strategy) have distinct shapes and that these shapes have evolved under evolutionary constraints. However, we did not find support for greater disparity in corolla shape of more generalist species. This could be because the corolla shape of more generalist species in subtribe Gesneriinae, which has evolved multiple times, is finely adapted to be effectively pollinated by both bats and hummingbirds. These results suggest that ecological generalization is not necessarily associated with relaxed selection constraints.


Asunto(s)
Evolución Biológica , Flores/genética , Magnoliopsida/genética , Polinización , Selección Genética , Animales , Abejas , Aves , Quirópteros , Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Mariposas Nocturnas , Indias Occidentales
10.
Mol Phylogenet Evol ; 119: 93-104, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29113924

RESUMEN

For over a century, the origins and mechanisms underlying the diversification of the enormous temperate genus Carex (>2100 species; Cariceae, Cyperaceae) have remained largely speculative. Characteristics such as its diverse ecology, varied biogeography, and intriguing cytology have made Carex a powerful model for studying plant evolution, but its uncertain sister-group relationships hinder its use in studies that depend on accurate ancestral state estimates and biogeographic inferences. To identify the sister to Carex, we estimated the phylogeny of all genera in the Cariceae-Dulichieae-Scirpeae clade (CDS) using three plastid and two nuclear ribosomal markers. Ancestral state reconstructions of key characters were made, and a time-calibrated tree estimated. Carex is strongly supported as sister to the rare East Asian Sumatroscirpus, sole genus of a new tribe, Sumatroscirpeae trib. nov. Believed to be unique to Carex, the perigynium (prophyllar bract enclosing a flower) is in fact a synapomorphy shared with this small tribe (∼4 species) that appeared 36 Mya. We thus suggest the initial key innovation in the remarkable diversification of Carex is not the perigynium, but could be the release of mechanical constraints on perigynia through spikelet truncation, resulting in novel adaptive morphologies. Monoecy, chromosomal change, and rapid inflorescence development enabling phenological isolation may also be involved. The tiny tribe Sumatroscirpeae will provide unprecedented insights into the inflorescence homology, evolution, diversification, and biogeographic history of its sister-group Carex, one of the world's most diverse plant lineages.


Asunto(s)
Carex (Planta)/clasificación , Filogenia , Carex (Planta)/anatomía & histología , Fósiles , Funciones de Verosimilitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...