Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 132(6): 1145-1158, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37856076

RESUMEN

BACKGROUND AND AIMS: Olive (Olea europaea subsp. europaea var. europaea) is the most extensively cultivated fruit crop worldwide. It is considered a wind-pollinated and strictly outcrossing crop. Thus, elevated pollen production is crucial to guarantee optimum fruit set and yield. Despite these facts, the variability of pollen production within the cultivated olive has been scarcely studied. This study aimed to characterize this feature by analysing a representative set of worldwide olive cultivars. METHODS: We evaluated the average number of pollen grains per anther in 57 principal cultivars over three consecutive years. We applied a standard generalized linear model (GLM) approach to study the influence of cultivar, year and the previous year's fruit load on the amount of pollen per anther. Additionally, the K-means method was used for cluster analysis to group cultivars based on their pollen production capacity. KEY RESULTS: Pollen production per anther was highly variable among olive cultivars. The cultivar significantly accounted for 51.3 % of the variance in pollen production and the year for 0.3 %. The interaction between the two factors explained 8.4 % of the variance, indicating that not all cultivars were equally stable in producing pollen across the years. The previous year's fruit load and its interaction with the year were significant, but barely accounted for 1.5 % of the variance. Olive cultivars were classified into four clusters according to their capacity to produce pollen. Interestingly, the fourth cluster was composed of male-sterile cultivars, which presumably share this character by inheritance. CONCLUSIONS: Pollen production per anther varied extensively within the cultivated olive. This variation was mainly driven by the cultivar and its interaction with the year. The differential capacity of olive cultivars to produce pollen should be considered not only for designing new orchards but also gardens where this species is used as an ornamental.


Asunto(s)
Olea , Olea/genética , Polen , Frutas/genética
2.
Sci Total Environ ; 897: 165400, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423282

RESUMEN

Climate change is disrupting phenology and interaction patterns of natural ecosystems, but also human activities that modify land-uses have a direct impact, especially on species distribution and loss of biodiversity. The objective of this study is to evaluate the impact of climate and land-use changes on phenology and airborne pollen spectrum in a Mediterranean natural area, dominated by Quercus Forest and 'dehesa', in the South of the Iberian Peninsula. 61 different pollen types were identified over a 23-year period (1998-2020), mainly from trees and shrubs, such as Quercus, Olea, Pinus or Pistacia, and from herbaceous plants, such as Poaceae, Plantago, Urticaceae or Rumex. A comparison of pollen data from the first years of the study (1998-2002) up recent years (2016-2020), showed a substantial decrease in the relative abundance of pollen from autochthonous species associated with natural areas, such as Quercus or Plantago. However, the relative abundance of the pollen from cultivated ones such as Olea and Pinus, which is used for reforestation has increased. Regarding flowering phenology trends, our analyses revealed variations between -1.5 and 1.5 days per year. Taxa showing an advance phenology were Olea, Poaceae and Urticaceae, whereas Quercus, Pinus, Plantago, Pistacia or Cyperaceae experienced delayed pollination. Meteorological trends in the area generally resulted in an increase in both minimum and maximum temperatures, along with a decrease in precipitations. Changes in pollen concentration and phenology were correlated with changes in air temperatures and precipitation, although the positive or negative influence varied for each pollen type. The results suggest that climate change together with those motivated by land cover changes lead by human activities are having an impact on the phenology and pollen concentration, with the related consequences on pollination and therefore biodiversity more concerning in threatened areas as the Mediterranean Basin.


Asunto(s)
Contaminantes Atmosféricos , Olea , Quercus , Humanos , Alérgenos/análisis , Ecosistema , Contaminantes Atmosféricos/análisis , Estaciones del Año , Monitoreo del Ambiente , Polen/química , Poaceae , Bosques , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...