Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 19384, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852908

RESUMEN

The use of taxanes has for decades been crucial for treatment of several cancers. A major limitation of these therapies is inherent or acquired drug resistance. A key to improved outcome of taxane-based therapies is to develop tools to predict and monitor drug efficacy and resistance in the clinical setting allowing for treatment and dose stratification for individual patients. To assess treatment efficacy up to the level of drug target engagement, we have established several formats of tubulin-specific Cellular Thermal Shift Assays (CETSAs). This technique was evaluated in breast and prostate cancer models and in a cohort of breast cancer patients. Here we show that taxanes induce significant CETSA shifts in cell lines as well as in animal models including patient-derived xenograft (PDX) models. Furthermore, isothermal dose response CETSA measurements allowed for drugs to be rapidly ranked according to their reported potency. Using multidrug resistant cancer cell lines and taxane-resistant PDX models we demonstrate that CETSA can identify taxane resistance up to the level of target engagement. An imaging-based CETSA format was also established, which in principle allows for taxane target engagement to be accessed in specific cell types in complex cell mixtures. Using a highly sensitive implementation of CETSA, we measured target engagement in fine needle aspirates from breast cancer patients, revealing a range of different sensitivities. Together, our data support that CETSA is a robust tool for assessing taxane target engagement in preclinical models and clinical material and therefore should be evaluated as a prognostic tool during taxane-based therapies.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/farmacología , Tubulina (Proteína)/genética , Biomarcadores de Tumor/genética , Biopsia con Aguja Fina/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Masculino , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Taxoides/efectos adversos
2.
Nat Commun ; 6: 7916, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26243583

RESUMEN

The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation.


Asunto(s)
Desdiferenciación Celular , Músculo Esquelético/fisiología , Notophthalmus viridescens/fisiología , Regeneración , Animales , Caspasas/metabolismo , Muerte Celular , Proliferación Celular , Femenino , Ratones Endogámicos NOD , Ratones SCID , Fibras Musculares Esqueléticas , Músculo Esquelético/citología
3.
J Cell Physiol ; 223(2): 376-83, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20112291

RESUMEN

Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.


Asunto(s)
Comunicación Celular/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Nanotubos de Péptidos , Células Satélite del Músculo Esquelético/fisiología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Transporte Biológico Activo/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/citología , Proteína MioD/metabolismo , Factor de Transcripción PAX7/metabolismo , Fenotipo , Células Satélite del Músculo Esquelético/ultraestructura
4.
Cell Cycle ; 6(9): 1096-101, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17457055

RESUMEN

Salamanders display unique regeneration abilities among adult vertebrates. An intriguing feature of salamander regeneration is the dedifferentiation of cells, such as myofibers and myotubes at the injury site, a process that involves cell cycle reentry from the differentiated state. A thrombin-activated serum factor that is distinct from conventional growth factors is known to cause S-phase reentry in salamander myotubes. While mammalian myotubes do not reenter S-phase upon serum stimulation, an upregulation of some immediate early genes such as jun and fos has been observed. Until now, it was unknown whether this transcriptional response was stimulated by conventional growth factors or by the thrombin-activated serum factor. By measuring transcriptional activity in individually purified C2C12 mouse myotubes using quantitative reverse transcription polymerase chain reactions, we show that a set of immediate early genes are activated in response to the thrombin-activated serum factor in a distinct manner from the growth factors PDGF, FGF and EGF. A partially purified fraction of the thrombin activated serum factor elicited stronger upregulation of a broader set of genes compared to individual growth factors and additionally caused downregulation of E2F6. Despite this robust transcriptional response in mammalian myotubes, we did not detect a large-scale change in histone H3K9 di-methylation or S-phase, a feature that characterizes salamander serum-stimulated myotubes. Our results indicate that mammalian myotubes have retained responsiveness to the thrombin-activated serum factor, but full reentry into S-phase is prevented by factors downstream of the immediate early genes.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/farmacología , Fibras Musculares Esqueléticas/fisiología , Fase S , Trombina/farmacología , Urodelos/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Regeneración , Fase S/fisiología
5.
Dev Dyn ; 236(2): 481-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17109398

RESUMEN

Cellular dedifferentiation is required for functional regeneration in salamanders. Dedifferentiating multinucleate skeletal muscle gives rise to mononucleate cells during limb regeneration. Efficient methods and tools must be developed in order to understand the molecular cues underlying dedifferentiation. Here we describe a non-viral method to express extra-chromosomal DNA exclusively in terminally differentiated muscle without the need for cell purification steps. After cytoplasmic injection of various expression vectors into myotubes or myofibres, we detect long-lasting mRNA and protein expression in up to 70% of the injected cells. The combination of the transfection protocol with live imaging allows a time- and cost-effective screen of candidate genes in terminally differentiated muscle cells of both amphibian and mammalian origin.


Asunto(s)
Diferenciación Celular/fisiología , Extremidades/fisiología , Marcación de Gen/métodos , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Regeneración/fisiología , Urodelos/fisiología , Animales , Vectores Genéticos/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Proteínas Luminiscentes , Microinyecciones , Regeneración/genética , Urodelos/genética
6.
J Cell Biol ; 172(3): 433-40, 2006 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-16449193

RESUMEN

In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.


Asunto(s)
Extremidades/fisiología , Células Madre Multipotentes/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Adipocitos/citología , Animales , Membrana Basal/citología , Cadherinas/metabolismo , Cartílago/citología , Recuento de Células , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular , Trasplante de Células , Células Cultivadas , Células Epidérmicas , Histonas/análisis , Células Madre Multipotentes/citología , Células Madre Multipotentes/trasplante , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/química , Músculo Esquelético/citología , Proteína MioD/análisis , Cadenas Pesadas de Miosina/metabolismo , Notophthalmus viridescens , Osteoblastos/citología , Factor de Transcripción PAX7/análisis , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/trasplante
7.
Eur J Cell Biol ; 83(10): 583-90, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15679103

RESUMEN

Autophagy (which includes macro-, micro-, and chaperone-mediated autophagy) is an important biological mechanism for degradation of damaged/obsolete macromolecules and organelles. Ageing non-dividing cells, however, progressively accumulate oxidised proteins, defective organelles and intralysosomal lipofuscin inclusions, suggesting inherent insufficiency of autophagy. To learn more about the role of macroautophagy in the turnover of organelles and lipofuscin formation, we inhibited autophagic sequestration with 3-methyladenine (3 MA) in growth-arrested human fibroblasts, a classical model of cellular ageing. Such treatment resulted in a dramatic accumulation of altered lysosomes, displaying lipofuscin-like autofluorescence, as well as in a moderate increase of mitochondria with lowered membrane potential. The size of the late endosomal compartment appeared not to be significantly altered following 3 MA exposure. The accumulation of lipofuscin-like material was enhanced when 3 MA administration was combined with hyperoxia. The findings suggest that macroautophagy is essential for normal turnover of lysosomes. This notion is supported by reports in the literature of lysosomal membrane proteins inside lysosomes and/or late endosomes, as well as lysosomes with active hydrolases within autophagosomes following vinblastine-induced block of fusion between lysosomes and autophagosomes. The data also suggest that specific components of lysosomes, such as membranes and proteins, may be direct sources of lipofuscin.


Asunto(s)
Adenina/análogos & derivados , Adenina/farmacología , Autofagia , Fibroblastos/efectos de los fármacos , Lipofuscina/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Catepsinas/antagonistas & inhibidores , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Hiperoxia/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Procolágeno/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...