Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
Ecotoxicol Environ Saf ; 285: 117106, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39326353

RESUMEN

Cadmium (Cd) is a common environmental metal. Previous studies indicated that long-term respiratory Cd exposure caused lung injury and airway inflammation. The purpose of this study was to evaluate whether short-term respiratory Cd exposure induces pulmonary ferroptosis and NLRP3 inflammasome activation. Adult C57BL/6J mice were exposed to Cd by inhaling CdCl2 aerosol (0, 10, or 100 ppm) for 5 days. Serum and lung Fe2+ contents were elevated in Cd-exposed mice. Oxidized AA metabolites, the major oxidized lipids during ferroptosis, were upregulated in Cd-exposed mouse lungs. Pulmonary MDA content and 4-HNE-positive cells were increased in Cd-exposed mice. ACSL4 and COX-2, two lipoxygenases, were upregulated in Cd-exposed mouse lungs. Further analyses found that phosphorylated NF-kB p65 was elevated in Cd-exposed mouse lungs. Innate immune receptor protein NLRP3 and adapter protein ASC were upregulated in Cd-exposed mouse lungs. Caspase-1 was activated and IL-1ß and IL-18 were upregulated in Cd-exposed mouse lungs. Fer-1, a specific inhibitor of ferroptosis, attenuated Cd-induced elevation of pulmonary NLRP3 and ASC, caspase-1 activation, and IL-1ß and IL-18 upregulation. Finally, mitoquinone (MitoQ), a mitochondria-target antioxidant, suppressed Cd-caused ferroptosis and NLRP3 inflammasome activation. Our results demonstrate that ferroptosis might partially mediate Cd-evoked activation of NLRP3 inflammasome in the lungs.

2.
Int J Ophthalmol ; 17(9): 1599-1605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296572

RESUMEN

AIM: To investigate the antioxidant protective effect of Lycium barbarum glycopeptide (LbGP) pretreatment on retinal ischemia-reperfusion (I/R) injury (RIRI) in rats. METHODS: RIRI was induced in Sprague Dawley rats through anterior chamber perfusion, and pretreatment involved administering LbGP via gavage for 7d. After 24h of reperfusion, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (CREA) levels, retinal structure, expression of Caspase-3 and Caspase-8, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in the retina were measured. RESULTS: The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer (GCL) and nerve fiber layer (NFL) of rats subjected to RIRI, as shown by light microscopy and optical coherence tomography (OCT). Serum AST was higher in the model group than in the blank group (P=0.042), but no difference was found in ALT, AST, and CREA across the LbGP groups and model group. Caspase-3 expression was higher in the model group than in the blank group (P=0.006), but no difference was found among LbGP groups and the model group. Caspase-8 expression was higher in the model group than in the blank group (P=0.000), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). SOD activity was lower in the model group than in the blank group (P=0.001), and the decrease was slower in the 400 mg/kg LbGP group than in the model group (P=0.003). MDA content was higher in the model group than in the blank group (P=0.001), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model. CONCLUSION: LbGP pretreatment exhibits dose-dependent anti-inflammatory, and antioxidative effects by reducing Caspase-8 expression, preventing declines of SOD activity, and decreasing MDA content in the RIRI rat model.

3.
Adv Mater ; : e2410121, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279558

RESUMEN

Oxygen reduction and evolution reactions are two key processes in electrochemical energy conversion technologies. Synthesis of nonprecious metal, carbon-based electrocatalysts with high oxygen bifunctional activity and stability is a crucial, yet challenging step to achieving electrochemical energy conversion. Here, an approach to address this issue: synthesis of an atomically dispersed Fe electrocatalyst (Fe1/NCP) over a porous, defect-containing nitrogen-doped carbon support, is described. Through incorporation of a phosphorus atom into the second coordination sphere of iron, the activity and durability boundaries of this catalyst are pushed to an unprecedented level in alkaline environments, such as those found in a zinc-air battery. The rationale is to delicately incorporate P heteroatoms and defects close to the central metal sites (FeN4P1-OH) in order to break the local symmetry of the electronic distribution. This enables suitable binding strength with oxygenated intermediates. In situ characterizations and theoretical studies demonstrate that these synergetic interactions are responsible for high bifunctional activity and stability. These intrinsic advantages of Fe1/NCP enable a potential gap of a mere 0.65 V and a high power density of 263.8 mW cm-2 when incorporated into a zinc-air battery. These findings underscore the importance of design principles to access high-performance electrocatalysts for green energy technologies.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125152, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39332073

RESUMEN

As donors for effective energy transfer, metal-organic frameworks (MOFs) have attracted the attention of many experts in the field of artificial light-harvesting materials. This study introduces a novel two-dimensional Zn-MOF, synthesized using flexible 1,3-phenyldiacetic acid (H2mpda) and rigid 1,3,5-tris(1-imidazolyl)benzene (tib) as organic ligands. Through atomic force microscopy (AFM), we have determined the monolayer thickness of this novel material to be 5 nm. Achieving two-dimensional Zn-MOF nanosheets with large BET surface area was made possible by employing ultrasonic stripping techniques. The fluorescence emission spectrum of Zn-MOF nanosheets overlaps with the UV-vis absorption spectrum of coumarin 6 (CM6), so they can be used as a donor and acceptor for fluorescence resonance energy transfer (FRET) to construct an artificial light-harvesting system (ALHS). Compared with single crystal Zn-MOF, CM6@Zn-MOF(2) has a larger BET surface area (41 m2/g), higher quantum yield (Φfl, 30.56 %), narrower energy gap (Eg, 2.87 eV), and the light-harvesting range extends to the visible green light area. Notably, CM6@Zn-MOF(2) demonstrates a robust photocurrent response, characterized by a photocurrent on/off ratio (Ilight/Idark) of 21, and a maximum photocurrent density that surpasses that of pure Zn-MOF (2.25:1). This study successfully designed a high-performance photoelectric conversion material CM6@Zn-MOF(2), which laid a certain theoretical foundation for new artificial optical acquisition systems and electrochemical material selection.

5.
Mar Drugs ; 22(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330267

RESUMEN

Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.


Asunto(s)
Diatomeas , Haptophyta , Microalgas , Valor Nutritivo , Xantófilas , Microalgas/metabolismo , Diatomeas/metabolismo , Diatomeas/química , Haptophyta/metabolismo
6.
Oral Oncol ; 157: 106987, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133972

RESUMEN

PURPOSE: To establish and validate a delta-radiomics-based model for predicting progression-free survival (PFS) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) following induction chemotherapy (IC). METHODS AND MATERIALS: A total of 250 LA-NPC patients (training cohort: n = 145; validation cohort: n = 105) were enrolled. Radiomic features were extracted from MRI scans taken before and after IC, and changes in these features were calculated. Following feature selection, a delta-radiomics signature was constructed using LASSO-Cox regression analysis. A prognostic nomogram incorporating independent clinical indicators and the delta-radiomics signature was developed and assessed for calibration and discrimination. Risk stratification by the nomogram was evaluated using Kaplan-Meier methods. RESULTS: The delta-radiomics signature, consisting of 12 features, was independently associated with prognosis. The nomogram, integrating the delta-radiomics signature and clinical factors demonstrated excellent calibration and discrimination. The model achieved a Harrell's concordance index (C-index) of 0.848 in the training cohort and 0.820 in the validation cohort. Risk stratification identified two groups with significantly different PFS rates. The three-year PFS for high-risk patients who received concurrent chemoradiotherapy (CCRT) or radiotherapy plus adjuvant chemotherapy (RT+AC) after IC was significantly higher than for those who received RT alone, reaching statistical significance. In contrast, for low-risk patients, the three-year PFS after IC was slightly higher for those who received CCRT or RT+AC compared to those who received RT alone; however, this difference did not reach statistical significance. CONCLUSIONS: Our delta MRI-based radiomics model could be useful for predicting PFS and may guide subsequent treatment decisions after IC in LA-NPC.


Asunto(s)
Quimioterapia de Inducción , Imagen por Resonancia Magnética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nomogramas , Radiómica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Quimioterapia de Inducción/métodos , Imagen por Resonancia Magnética/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/radioterapia , Pronóstico , Resultado del Tratamiento
7.
BMC Pulm Med ; 24(1): 386, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128985

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS: Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS: These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS: Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.


Asunto(s)
Pulmón , Encuestas Nutricionales , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/orina , Masculino , Femenino , Adulto , Persona de Mediana Edad , Pulmón/fisiopatología , Pulmón/efectos de los fármacos , Volumen Espiratorio Forzado , Exposición a Riesgos Ambientales/efectos adversos , Capacidad Vital , Teorema de Bayes , Recuento de Leucocitos , Metales/orina , Inflamación/orina , Pruebas de Función Respiratoria , Análisis de Mediación
8.
Heliyon ; 10(13): e33113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39044963

RESUMEN

The study examines the ecological and economic effects of the Chinese environment supply chain financial decision-making recommendation systems from 2009 to 2021. Environment analytics has become essential for organizations because of the rapid growth of digital technology and data. This technology offers exceptional corporate performance and environmental sustainability opportunities. This research uses Spatial Durbin Models and mediation effect analysis to examine how environment adoption affects key company performance measures. It also discusses the differences between industry and business models. Environment technologies improve operating efficiency, customer happiness, and company value. According to findings, environmental technology may streamline operational operations, boost customer happiness, and generate value, improving financial performance. Big data has ecological benefits, according to the findings. Environment technology may reduce a firm's environmental effect by improving operational efficiency and allowing sustainable practices. Research shows significant industry and organizational differences. This highlights the need for ecological plans for each sector's needs. Big data also mediates, showing that the environment may affect other operational aspects and increase their impact. Data ethics and responsibility are crucial. The findings demonstrate that the climate may support sustainable behaviors and meet environmental sustainability goals. To better understand big data's revolutionary power. Enterprises must carefully manage and responsibly use this powerful tool to maximize its benefits and minimize its disadvantages. This research will shape environmental strategies and practices as digital possibilities present themselves to enterprises and society.

9.
Angew Chem Int Ed Engl ; 63(38): e202408846, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39031731

RESUMEN

Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.

10.
J Hazard Mater ; 476: 135103, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972203

RESUMEN

An earlier study found that respiratory cadmium chloride (CdCl2) exposure caused COPD-like lung injury. This study aimed to explore whether mitochondrial dysfunction-mediated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. Adult C57BL/6 mice were exposed to CdCl2 (10 mg/L) aerosol for six months. Beta-galactosidase-positive cells, p21 and p16 were increased in CdCl2-exposed mouse lungs. The in vitro experiments showed that γ-H2AX was elevated in CdCl2-exposed alveolar epithelial cells. The cGAS-STING pathway was activated in CdCl2-exposed alveolar epithelial cells and mouse lungs. Cxcl1, Cxcl9, Il-10, Il-1ß and Mmp2, several senescence-associated secretory phenotypes (SASP), were upregulated in CdCl2-exposed alveolar epithelial cells. Mechanistically, CdCl2 exposure caused SIRT3 reduction and mitochondrial dysfunction in mouse lungs and alveolar epithelial cells. The in vitro experiment found that Sirt3 overexpression attenuated CdCl2-induced alveolar epithelial senescence and SASP. The in vivo experiments showed that Sirt3 gene knockout exacerbated CdCl2-induced alveolar epithelial senescence, alveolar structure damage, airway inflammation and pulmonary function decline. NMN, an NAD+ precursor, attenuated CdCl2-induced alveolar epithelial senescence and SASP in mouse lungs. Moreover, NMN supplementation prevented CdCl2-induced COPD-like alveolar structure damage, epithelial-mesenchymal transition and pulmonary function decline. These results suggest that mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury.


Asunto(s)
Senescencia Celular , Ratones Endogámicos C57BL , Mitocondrias , Enfermedad Pulmonar Obstructiva Crónica , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Senescencia Celular/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Masculino , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Sirtuina 3/metabolismo , Sirtuina 3/genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA