Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Cir Bras ; 29(4): 252-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24760026

RESUMEN

PURPOSE: To construct a new biomaterial-small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor, and to evaluate the new biomaterials for the reconstruction of abdominal wall defects. METHODS: Thirty six Sprague-Dawley rats were used in the animal experiments and randomly divided into three groups. The new biomaterial was constructed by combining small intestinal submucosa with gelatin hydrogel for basic fibroblast growth factor release. Abdominal wall defects were created in rats, and repaired using the new biomaterials (group B), compared with small intestinal submucosa (group S) and ULTRAPROTM mesh (group P). Six rats in each group were sacrificed at three and eight weeks postoperatively to examine the gross effects, inflammatory responses, collagen deposition and neovascularization. RESULTS: After implantation, mild adhesion was caused in groups B and S. Group B promoted more neovascularization than group S at three weeks after implantation, and induced significantly more amount of collagen deposition and better collagen organization than groups S and P at eight weeks after implantation. CONCLUSION: Small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor could promote better regeneration and remodeling of host tissues for the reconstruction of abdominal wall defects.


Asunto(s)
Pared Abdominal/cirugía , Materiales Biocompatibles/uso terapéutico , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Gelatina/uso terapéutico , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Mucosa Intestinal/trasplante , Pared Abdominal/patología , Animales , Colágeno/análisis , Inmunohistoquímica , Intestino Delgado , Ensayo de Materiales , Distribución Aleatoria , Ratas Sprague-Dawley , Regeneración , Reproducibilidad de los Resultados , Factores de Tiempo , Adherencias Tisulares , Resultado del Tratamiento
2.
Acta cir. bras ; Acta cir. bras;29(4): 252-260, abr. 2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-706953

RESUMEN

To construct a new biomaterial-small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor, and to evaluate the new biomaterials for the reconstruction of abdominal wall defects. Thirty six Sprague-Dawley rats were used in the animal experiments and randomly divided into three groups. The new biomaterial was constructed by combining small intestinal submucosa with gelatin hydrogel for basic fibroblast growth factor release. Abdominal wall defects were created in rats, and repaired using the new biomaterials (group B), compared with small intestinal submucosa (group S) and ULTRAPROTM mesh (group P). Six rats in each group were sacrificed at three and eight weeks postoperatively to examine the gross effects, inflammatory responses, collagen deposition and neovascularization. After implantation, mild adhesion was caused in groups B and S. Group B promoted more neovascularization than group S at three weeks after implantation, and induced significantly more amount of collagen deposition and better collagen organization than groups S and P at eight weeks after implantation. Small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor could promote better regeneration and remodeling of host tissues for the reconstruction of abdominal wall defects.


Asunto(s)
Animales , Ratas , Fibroblastos , Hidrogeles , Mucosa Intestinal/anatomía & histología , Pared Abdominal/anatomía & histología , Ratas/clasificación
3.
Acta cir. bras. ; 29(4): 252-260, 04/2014. tab, graf
Artículo en Inglés | VETINDEX | ID: vti-10230

RESUMEN

To construct a new biomaterial-small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor, and to evaluate the new biomaterials for the reconstruction of abdominal wall defects. Thirty six Sprague-Dawley rats were used in the animal experiments and randomly divided into three groups. The new biomaterial was constructed by combining small intestinal submucosa with gelatin hydrogel for basic fibroblast growth factor release. Abdominal wall defects were created in rats, and repaired using the new biomaterials (group B), compared with small intestinal submucosa (group S) and ULTRAPROTM mesh (group P). Six rats in each group were sacrificed at three and eight weeks postoperatively to examine the gross effects, inflammatory responses, collagen deposition and neovascularization. After implantation, mild adhesion was caused in groups B and S. Group B promoted more neovascularization than group S at three weeks after implantation, and induced significantly more amount of collagen deposition and better collagen organization than groups S and P at eight weeks after implantation. Small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor could promote better regeneration and remodeling of host tissues for the reconstruction of abdominal wall defects.(AU)


Asunto(s)
Animales , Ratas , Pared Abdominal/anatomía & histología , Mucosa Intestinal/anatomía & histología , Hidrogeles , Fibroblastos , Ratas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA