Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 954: 176638, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362560

RESUMEN

Coastal cities, as centres of human habitation, economic activity and biodiversity, are confronting the ever-escalating challenges posed by climate change. In this work, a novel Multi-Hazard Risk Assessment framework is presented with the focus on Coastal City Living Labs. The methodology provides a comprehensive assessment of climate-related hazards, including sea-level rise, coastal flooding, coastal erosion, land flooding, heavy precipitation, extreme temperatures, heatwaves, cold spells, landslides and strong winds. Its application is illustrated through a case study: the Coastal City Living Lab of Benidorm, Spain. The methodology incorporates remote sensing data from various satellite sources, such as ERA5, Urban Atlas and MERIT DEM, to evaluate multiple hazards through a systematic and standardized indicator-based approach, offering a holistic risk profile that allows for comparison with other European coastal cities. The integration of remote sensing data enhances the accuracy and resolution of hazard indicators, providing detailed insights into the spatiotemporal dynamics of climate risks. The incorporation of local expertise through the Coastal City Living Lab concept enriches data collection and ensures context-specific adequacy. The integration of local studies and historical extreme climate events enhances the validity and context of the risk indicators. The findings align with regional trends and reveal specific vulnerabilities, particularly related to heatwaves, heavy rainfall, and coastal flooding. Despite its strengths, the MHRA methodology faces limitations, including reliance on outdated datasets and the complexity of integrating multiple hazards. Continuous updates and adaptive management strategies are essential to maintain the accuracy and relevance of risk assessments. The broader implications of the methodology for global coastal cities highlight its potential as a model for developing targeted adaptation strategies.

2.
Sci Total Environ ; 945: 174004, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901582

RESUMEN

As the spectre of climate change looms large, there is an increasing imperative to develop comprehensive risk assessment tools. The purpose of this work is to evaluate the evolution and current state of research on multi-hazard indices associated with climate-related hazards, highlighting their crucial role in effective risk assessment amidst the growing challenges of climate change. A notable gap in cross-regional comparative studies persists, presenting an opportunity for future research to enhance global understanding and foster universal resilience strategies. However, a significant surge in research output is apparent, following key global milestones related to climate change action. The research landscape is shown to be highly responsive to international policy developments, increasingly adopting interdisciplinary approaches that integrate physical, social, and technological dimensions. Findings reveal a robust emphasis on geospatial analysis and the development of various indices that transform abstract climate risks into actionable data, underscoring a trend towards localized, context-specific vulnerability assessments. Based on dataset systematically curated under the PRISMA guidelines, the review explores how prevailing research themes are reflected in influential journals and author networks, mapping out a dynamic and expanding academic community. Moreover, this work provides critical insights into the underlying literature by conducting a thematic analysis on the typology of studies, the focus on coastal areas, the inclusion of climate change scenarios, the geographical coverage, and the types of climate-related hazards. The practical implications of this review are profound, providing policymakers and practitioners with meaningful insights to enhance climate change mitigation and adaptation efforts through the application of index-based methodologies. By charting a course for future scholarly endeavours, this article aims to strengthen the scientific foundations supporting resilient and adaptive strategies for regions worldwide facing the multifaceted impacts of climate change.

3.
J Environ Manage ; 357: 120787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579470

RESUMEN

The assessment of risk posed by climate change in coastal cities encompasses multiple climate-related hazards. Sea-level rise, coastal flooding and coastal erosion are important hazards, but they are not the only ones. The varying availability and quality of data across cities hinders the ability to conduct holistic and standardized multi-hazard assessments. Indeed, there are far fewer studies on multiple hazards than on single hazards. Also, the comparability of existing methodologies becomes challenging, making it difficult to establish a cohesive understanding of the overall vulnerability and resilience of coastal cities. The use of indicators allows for a standardized and systematic evaluation of baseline hazards across different cities. The methodology developed in this work establishes a framework to assess a wide variety of climate-related hazards across diverse coastal cities, including sea-level rise, coastal flooding, coastal erosion, heavy rainfall, land flooding, droughts, extreme temperatures, heatwaves, cold spells, strong winds and landslides. Indicators are produced and results are compared and mapped for ten European coastal cities. The indicators are meticulously designed to be applicable across different geographical contexts in Europe. In this manner, the proposed approach allows interventions to be prioritized based on the severity and urgency of the specific risks faced by each city.


Asunto(s)
Cambio Climático , Inundaciones , Ciudades , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA