Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 98(1): 517-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25465549

RESUMEN

Dietary crude protein (CP) and phosphorus (P) have the potential to alter dairy cow production, nutrient status, and milk heat stability, specifically in early lactation. This study examined the effect of supplementary concentrates with different CP and P concentrations on blood N and P status and on milk yield, composition, and heat stability. The concentrates [4kg of dry matter (DM) concentrate per cow daily] were fed to grazing dairy cows (13kg DM grass) during early lactation. Forty-eight spring-calving dairy cows were allocated to 4 treatments: high CP, high P (HPrHP; 302g/kg DM CP, 6.8g/kg DM P), medium CP, high P (MPrHP; 202g/kg DM CP, 4.7g/kg DM P), low CP, high P (LPrHP; 101g/kg DM CP, 5.1g/kg DM P), and low CP, low P (LPrLP; 101g/kg DM CP, 0.058g/kg DM P), for 8wk. Levels of N excretion were significantly higher in animals fed the HPrHP and MPrHP concentrates; P excretion was significantly lower in animals fed the LPrLP concentrate. Reducing the level of P in the diet (LPrLP concentrate) resulted in a significantly lower blood P concentration, whereas milk yield and composition (fat and protein) were not affected by either CP or P in the diet. The effect of the interaction between treatment and time on milk urea N was significant, reflecting the positive correlation between dietary CP and milk nonprotein N. Increasing supplementary CP and P (HPrHP) in the diet resulted in significantly lower milk heat stability at pH 6.8. The findings show that increasing dietary CP caused a decrease in milk heat stability, which reduced the suitability of milk for processing. The study also found that increasing dietary CP increased milk urea N and milk nonprotein N. Increasing dietary P increased fecal P excretion. These are important considerations for milk processors and producers for control of milk processing and environmental parameters.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Bovinos/fisiología , Proteínas en la Dieta/metabolismo , Lactancia/fisiología , Leche , Fósforo Dietético/metabolismo , Animales , Suplementos Dietéticos/análisis , Femenino , Leche/química , Leche/metabolismo , Leche/fisiología , Nitrógeno/metabolismo
2.
J Environ Qual ; 40(2): 362-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21520743

RESUMEN

Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.


Asunto(s)
Agricultura/métodos , Fertilizantes , Nitrógeno/metabolismo , Poaceae , Contaminantes Atmosféricos/metabolismo , Amoníaco/metabolismo , Animales , Bovinos , Estiércol , Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...