Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(8): 5094-5107, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38979636

RESUMEN

Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.


Asunto(s)
Anillo Fibroso , Hidrogeles , Animales , Anillo Fibroso/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Bovinos , Humanos , Impresión Tridimensional , Poliuretanos/química , Poliuretanos/farmacología , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/química
2.
Int J Biol Macromol ; 273(Pt 1): 132819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830498

RESUMEN

The avascular nature of hyaline cartilage results in limited spontaneous self-repair and regenerative capabilities when damaged. Recent advances in three-dimensional bioprinting have enabled the precise dispensing of cell-laden biomaterials, commonly referred to as 'bioinks', which are emerging as promising solutions for tissue regeneration. An effective bioink for cartilage tissue engineering needs to create a micro-environment that promotes cell differentiation and supports neocartilage tissue formation. In this study, we introduced an innovative bioink composed of photocurable acrylated type I collagen (COLMA), thiol-modified hyaluronic acid (THA), and poly(ethylene glycol) diacrylate (PEGDA) for 3D bioprinting cartilage grafts using human nasal chondrocytes. Both collagen and hyaluronic acid, being key components of the extracellular matrix (ECM) in the human body, provide essential biological cues for tissue regeneration. We evaluated three formulations - COLMA, COLMA+THA, and COLMA+THA+PEGDA - for their printability, cell viability, structural integrity, and capabilities in forming cartilage-like ECM. The addition of THA and PEGDA significantly enhanced these properties, showcasing the potential of this bioink in advancing applications in cartilage repair and reconstructive surgery.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Andamios del Tejido , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Condrocitos/citología , Condrocitos/efectos de los fármacos , Polietilenglicoles/química , Bioimpresión/métodos , Colágeno/química , Impresión Tridimensional , Cartílago/citología , Matriz Extracelular/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tinta
3.
Cell Commun Signal ; 22(1): 342, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907358

RESUMEN

BACKGROUND: Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS: In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS: RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION: These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.


Asunto(s)
Menisco , Simulación de Ingravidez , Humanos , Menisco/citología , Masculino , Femenino , Células Cultivadas , Persona de Mediana Edad , Proliferación Celular , Condrocitos/metabolismo , Condrocitos/citología , Adulto , Transcriptoma/genética
4.
J Tissue Eng ; 14: 20417314231172574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216035

RESUMEN

Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-ß1 or -ß3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-ß3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.

5.
Ann Biomed Eng ; 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005947

RESUMEN

Hydrogels appear to be an attractive class of biomaterial for cartilage tissue engineering due to their high water content, excellent biocompatibility, tunable stiffness, etc. The crosslinking density of the hydrogel can affect their viscoelastic property, and therefore potentially impact the chondrogenic phenotype of re-differentiated chondrocytes in a 3D microenvironment through physical cues. To understand the effect of crosslinking densities on chondrocytes phenotype and cellular interaction with the hydrogel, this study utilized a clinical grade thiolate hyaluronic acid and thiolate gelatin (HA-Gel) hydrogel, crosslinked with poly(ethylene glycol) diacrylate to create various crosslinking densities. The HA-Gel hydrogels were then mixed with human nasal chondrocytes to generate neocartilage in vitro. The influence of the hydrogel crosslinking density and the viscoelastic property on the cell behaviours on the gene and matrix levels were evaluated using biochemistry assays, histology, quantitative polymerase chain reaction (qPCR) and next-generation sequencing (RNA seq). In general, the differences in the storage modulus of the HA-Gel hydrogel are not enough to alter the cartilaginous gene expression of chondrocytes. However, a positively correlated trend of PPAR-γ gene expression to the crosslinking density was measured by qPCR. The RNA-seq results have shown that 178 genes are significantly negatively correlated and 225 genes are positively correlated to the crosslinking density, which is worth investigating in the future studies.

6.
Ann Biomed Eng ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952145

RESUMEN

Due to the limited self-repair capacity of the hyaline cartilage, the repair of cartilage remains an unsolved clinical problem. Tissue engineering strategy with 3D bioprinting technique has emerged a new insight by providing patient's personalized cartilage grafts using autologous cells for hyaline cartilage repair and regeneration. In this review, we first summarized the intrinsic property of hyaline cartilage in both maxillofacial and orthopedic regions to establish the requirement for 3D bioprinting cartilage tissue. We then reviewed the literature and provided opinion pieces on the selection of bioprinters, bioink materials, and cell sources. This review aims to identify the current challenges for hyaline cartilage bioprinting and the directions for future clinical development in bioprinted hyaline cartilage.

7.
Biomed Mater ; 17(6)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36254739

RESUMEN

This article aims to understand the rheology of collagen networks and their role in various stages of a bioprinting process while building tissue-like constructs. The science of rheology, which deals with the deformation and flow of matter, has grown considerably from its earlier focus on polymer melts and solutions and their processing methods to hydrogels with new processing procedures, such as bioprinting. The main objective of this paper is to discuss the impact of the rheology of collagen hydrogels on micro-extrusion and layer-stacking stages of bioprinting. Generally, the rheological characterization of hydrogels, including collagens by dynamic measurements under small deformations, is considered sufficient to evaluate their bioprinting performance. However, we brought out the importance of other rheological properties of collagen networks, such as steady-state shear flow conditions and large amplitude oscillator shear. While the dynamic measurements under small deformations help characterize the crosslinking and gel formations of the collagen, the steady shear flow measurements are better tools for investigating filament micro-extrusion and layer-stacking stages of a bioprinting process. We brought the role of other non-Newtonian material functions, such as first normal stress difference and extensional viscosity in addition to shear viscosity, for the first time. Extensional viscosity and the viscoelasticity manifested through normal-stress differences are significant in capillary (needle) flow. We also suggested caution to use dynamic viscosity vs. oscillation frequency under small deformations in place of steady shear viscosity vs. shear rate measurement. In addition, we brought out the importance of the large amplitude oscillatory shear test to investigate the collagen networks under large deformations. Finally, we discussed the role of crosslinking and flow conditions on cell viability. Those discussions are focused on collagen networks; nevertheless, they are valid on the bioprinting of other hydrogels.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Reología , Hidrogeles , Viscosidad , Colágeno
8.
J Tissue Eng ; 13: 20417314221086368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599742

RESUMEN

The removal of skin cancer lesions on the nose often results in the loss of nasal cartilage. The cartilage loss is either surgically replaced with autologous cartilage or synthetic grafts. However, these replacement options come with donor-site morbidity and resorption issues. 3-dimensional (3D) bioprinting technology offers the opportunity to engineer anatomical-shaped autologous nasal cartilage grafts. The 3D bioprinted cartilage grafts need to embody a mechanically competent extracellular matrix (ECM) to allow for surgical suturing and resistance to contraction during scar tissue formation. We investigated the effect of culture period on ECM formation and mechanical properties of 3D bioprinted constructs of human nasal chondrocytes (hNC)-laden type I collagen hydrogel in vitro and in vivo. Tissue-engineered nasal cartilage constructs developed from hNC culture in clinically approved collagen type I and type III semi-permeable membrane scaffold served as control. The resulting 3D bioprinted engineered nasal cartilage constructs were comparable or better than the controls both in vitro and in vivo. This study demonstrates that 3D bioprinted constructs of engineered nasal cartilage are feasible options in nasal cartilage reconstructive surgeries.

9.
Front Bioeng Biotechnol ; 9: 766399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805119

RESUMEN

Objective: The avascular inner regions of the knee menisci cannot self-heal. As a prospective treatment, functional replacements can be generated by cell-based 3D bioprinting with an appropriate cell source and biomaterial. To that end, human meniscus fibrochondrocytes (hMFC) from surgical castoffs of partial meniscectomies as well as cellulose nanofiber-alginate based hydrogels have emerged as a promising cell source and biomaterial combination. The objectives of the study were to first find the optimal formulations of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofiber/alginate (TCNF/ALG) precursors for bioprinting, and then to use them to investigate redifferentiation and synthesis of functional inner meniscus-like extracellular matrix (ECM) components by expanded hMFCs. Methods: The rheological properties including shear viscosity, thixotropic behavior recovery, and loss tangent of selected TCNF/ALG precursors were measured to find the optimum formulations for 3D bioprinting. hMFCs were mixed with TCNF/ALG precursors with suitable formulations and 3D bioprinted into cylindrical disc constructs and crosslinked with CaCl2 after printing. The bioprinted constructs then underwent 6 weeks of in vitro chondrogenesis in hypoxia prior to analysis with biomechanical, biochemical, molecular, and histological assays. hMFCs mixed with a collagen I gel were used as a control. Results: The TCNF/ALG and collagen-based constructs had similar compression moduli. The expression of COL2A1 was significantly higher in TCNF/ALG. The TCNF/ALG constructs showed more of an inner meniscus-like phenotype while the collagen I-based construct was consistent with a more outer meniscus-like phenotype. The expression of COL10A1 and MMP13 were lower in the TCNF/ALG constructs. In addition, the immunofluorescence of human type I and II collagens were evident in the TCNF/ALG, while the bovine type I collagen constructs lacked type II collagen deposition but did contain newly synthesized human type I collagen.

10.
FASEB J ; 35(3): e21191, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33595884

RESUMEN

Skin cancer patients often have tumorigenic lesions on their noses. Surgical resection of the lesions often results in nasal cartilage removal. Cartilage grafts taken from other anatomical sites are used for the surgical reconstruction of the nasal cartilage, but donor-site morbidity is a common problem. Autologous tissue-engineered nasal cartilage grafts can mitigate the problem, but commercially available scaffolds define the shape and sizes of the engineered grafts during tissue fabrication. Moreover, the engineered grafts suffer from the inhomogeneous distribution of the functional matrix of cartilage. Advances in 3D bioprinting technology offer the opportunity to engineer cartilages with customizable dimensions and anatomically shaped configurations without the inhomogeneous distribution of cartilage matrix. Here, we report the fidelity of Freeform Reversible Embedding of Suspended Hydrogel (FRESH) bioprinting as a strategy to generate customizable and homogenously distributed functional cartilage matrix engineered nasal cartilage. Using FRESH and in vitro chondrogenesis, we have fabricated tissue-engineered nasal cartilage from combining bovine type I collagen hydrogel and human nasoseptal chondrocytes. The engineered nasal cartilage constructs displayed molecular, biochemical and histological characteristics akin to native human nasal cartilage.


Asunto(s)
Bioimpresión/métodos , Cartílago Articular/citología , Condrocitos/química , Colágeno/química , Hidrogeles/química , Tabique Nasal/citología , Ingeniería de Tejidos/métodos , Adulto , Cartílago Articular/fisiología , Condrogénesis , Humanos , Masculino , Andamios del Tejido/química
11.
Tissue Eng Part A ; 27(13-14): 914-928, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32940137

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees. BMSCs were developed from bone marrow aspirates of the iliac crest. All cells were of human origin. Cells were cultured in type I collagen scaffolds under normoxia (21% O2) for 2 weeks followed by hypoxia (3% O2) for 3 weeks. The structural and functional assessment of the generated meniscus constructs were based on glycosaminoglycan (GAG) content, histological appearance, gene expression, and mechanical properties. The tissues formed by both cell types were histologically positive for Safranin O stain and appeared more intense in the BMSC constructs. This observation was confirmed by a 2.7-fold higher GAG content. However, there was no significant difference in collagen I (COL1A2) expression in BMSC- and MFC-based constructs (p = 0.17). The expression of collagen II (COL2A1) and aggrecan (ACAN) were significantly higher in BMSCs than MFC (p ≤ 0.05). Also, the gene expression of the hypertrophic marker collagen X (COL10A1) was 199-fold higher in BMSCs than MFC (p < 0.001). Moreover, relaxation moduli were significantly higher in BMSC-based constructs at 10-20% strain step than MFC-based constructs. BMSC-based constructs expressed higher COL2A1, ACAN, COL10A1, contained higher GAG content, and exhibited higher relaxation moduli at 10-20% strain than MFC-based construct. Impact statement Cell-based tissue engineering (TE) has the potential to produce functional tissue replacements for irreparably damaged knee meniscus. But the source of cells for the fabrication of the tissue replacements is currently unknown and of research interest in orthopedic TE. In this study, we fabricated tissue-engineered constructs using type I collagen scaffolds and two candidate cell sources in meniscus TE. We compared the mechanical properties of the tissues formed from human meniscus fibrochondrocytes and bone marrow-derived mesenchymal stem cells (BMSCs). Our data show that the tissues engineered from the BMSC are mechanically superior in relaxation modulus.


Asunto(s)
Menisco , Células Madre Mesenquimatosas , Células de la Médula Ósea , Células Cultivadas , Condrogénesis , Humanos , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...