Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 222: 113086, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36542953

RESUMEN

The host-material interface is critical in determining the successful integration of medical devices into human tissue. The surface topography can regulate the fibrous capsule formation around implants through macrophage polarization, but the exact mechanism remains unclear. In this study, four types of microgrooves (10 or 50 µm in groove depths and 50 or 200 µm in groove widths) were fabricated on polydimethylsiloxane (PDMS) using lithography. The microgroove surfaces were characterized using the laser scanning confocal microscopy and fourier transform infrared spectroscopy. The effect of surface topography on macrophage phenotypes and conditioned medium (CM) collected from macrophages on human foreskin fibroblast 1 (HFF-1) were investigated. The result revealed that a deeper and narrower microgroove structure means a rougher surface. Macrophages tended to adhere and aggregate on group 50-50 surface (groove depths and widths of 50 µm). THP-1 cell polarized toward both inflammatory M1 and anti-inflammatory M2 macrophages on the surface of each group. Meanwhile, CM from macrophages culture on PDMS differentially up-regulated the proliferation, migration and fibrosis of HFF-1. Among them, the group 50-50 had the strongest promoting effect. In vivo, the inflammatory response and fibrotic capsule around the implants were observed at 1 week and 4 weeks. As time passed, the inflammatory response decreased, while the capsule thickness continued to increase. The rough material surface was more inclined to develop a severe fibrotic encapsulation. In conclusion, this finding further suggested a potential immunomodulatory effect of macrophages in mediating the fibrotic response to implants and facilitated the design of biomaterial interfaces for improving tissue integration.


Asunto(s)
Materiales Biocompatibles , Prótesis e Implantes , Humanos , Propiedades de Superficie , Materiales Biocompatibles/química , Fibroblastos/fisiología , Macrófagos
2.
CNS Neurosci Ther ; 25(11): 1277-1281, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31696644

RESUMEN

AIMS: We aimed to investigate the effect of different pulse numbers of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the motor cortex on cortical excitability in healthy participants. METHODS: Fifteen healthy participants received 600 and 1200 pulses of 5-Hz rTMS on separate days in a random order. Stimulation (duration, 2 seconds and interval, 1 seconds) was delivered over the left primary motor cortex for the hand, at 90% of resting motor threshold (rMT). The rMT and motor evoked potential (MEP) were measured before stimulation, and at 0 and 30 minutes after rTMS. RESULTS: No significant differences were observed between the two conditions for MEP (P = .919) or rMT (P = .266). Compared with baseline, MEP was increased significantly at 0 (P < .001) and 30 minutes (P < .001) after stimulation. After stimulation, rMT was decreased at 0 minute for the 600 and 1200 pulse conditions (P < .001), but had recovered by 30 minutes (P = .073). CONCLUSION: Subthreshold 5-Hz rTMS increased motor cortex excitability in healthy humans. However, the number of pulses may exhibit a ceiling effect in that beyond a certain point, that is, increasing the number of pulses may exhibit no further increase in cortical excitability.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
3.
Mol Neurobiol ; 54(6): 3976-3987, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295274

RESUMEN

Hippocampal function is important for learning and memory, and dysfunction of the hippocampus has been linked to the pathophysiology of neuropsychiatric diseases such as schizophrenia. Neuregulin1 (NRG1) and ErbB4, two susceptibility genes for schizophrenia, reportedly modulate long-term potentiation (LTP) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, little is known regarding the contribution of hippocampal NRG1/ErbB4 signaling to learning and memory function. Here, quantitative real-time PCR and Western blotting were used to assess the mRNA and protein levels of NRG1 and ErbB4. Pharmacological and genetic approaches were used to manipulate NRG1/ErbB4 signaling, following which learning and memory behaviors were evaluated using the Morris water maze, Y-maze test, and the novel object recognition test. Spatial learning was found to reduce hippocampal NRG1 and ErbB4 expression. The blockade of NRG1/ErbB4 signaling in hippocampal CA1, either by neutralizing endogenous NRG1 or inhibiting/ablating ErbB4 receptor activity, enhanced hippocampus-dependent spatial learning, spatial working memory, and novel object recognition memory. Accordingly, administration of exogenous NRG1 impaired those functions. More importantly, the specific ablation of ErbB4 in parvalbumin interneurons also improved learning and memory performance. The manipulation of NRG1/ErbB4 signaling in the present study revealed that NRG1/ErbB4 activity in the hippocampus is critical for learning and memory. These findings might provide novel insights on the pathophysiological mechanisms of schizophrenia and a new target for the treatment of Alzheimer's disease, which is characterized by a progressive decline in cognitive function.


Asunto(s)
Regulación hacia Abajo , Hipocampo/metabolismo , Memoria , Neurregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Animales , Eliminación de Gen , Interneuronas/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Neurregulina-1/genética , Parvalbúminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor ErbB-4/genética , Aprendizaje Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...