Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3698, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260607

RESUMEN

In swine models, there are well-established protocols for creating a closed-chest myocardial infarction (MI) as well as protocols for characterization of cardiac function with cardiac magnetic resonance (CMR). This methods manuscript outlines a novel technique in CMR data acquisition utilizing smart-signal gradient recalled echo (GRE)-based array sequences in a free-breathing swine heart failure model allowing for both high spatial and temporal resolution imaging. Nine male Yucatan mini swine weighing 48.7 ± 1.6 kg at 58.2 ± 3.1 weeks old underwent the outlined imaging protocol before and 1-month after undergoing closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion. The left ventricular ejection fraction (LVEF) at baseline was 59.3 ± 2.4% and decreased to 48.1 ± 3.7% 1-month post MI (P = 0.029). The average end-diastolic volume (EDV) at baseline was 55.2 ± 1.7 ml and increased to 74.2 ± 4.2 ml at 1-month post MI (P = 0.001). The resulting images from this novel technique and post-imaging analysis are presented and discussed. In a Yucatan swine model of heart failure via closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion, we found that CMR with GRE-based array sequences produced clinical-grade images with high spatial and temporal resolution in the free-breathing setting.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Modelos Animales de Enfermedad , Corazón , Insuficiencia Cardíaca/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Masculino , Infarto del Miocardio/diagnóstico por imagen , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
2.
Stem Cells Int ; 2021: 9935679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34341667

RESUMEN

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are under preclinical investigation as a cell-based therapy for heart failure post-myocardial infarction. In a previous study, tissue-engineered cardiac grafts were found to improve hosts' cardiac electrical and mechanical functions. However, the durability of effect, immune response, and in vitro properties of the tissue graft remained uncharacterized. This present study is aimed at confirming the graft therapeutic efficacy in an immune-competent chronic heart failure (CHF) model and providing evaluation of the in vitro properties of the tissue graft. METHODS: hiPSC-CMs and human dermal fibroblasts were cultured into a synthetic bioabsorbable scaffold. The engineered grafts underwent epicardial implantation in infarcted immune-competent male Sprague-Dawley rats. Plasma samples were collected throughout the study to quantify antibody titers. At the study endpoint, all cohorts underwent echocardiographic, hemodynamic, electrophysiologic, and histopathologic assessments. RESULTS: The epicardially placed tissue graft therapy improved (p < 0.05) in vivo and ex vivo cardiac function compared to the untreated CHF cohort. Total IgM and IgG increased for both the untreated and graft-treated CHF cohorts. An immune response to the grafts was detected after seven days in graft-treated CHF rats only. In vitro, engineered grafts exhibited responsiveness to beta-adrenergic receptor agonism/antagonism and SERCA inhibition and elicited complex molecular profiles. CONCLUSIONS: This hiPSC-CM-derived cardiac graft improved systolic and diastolic cardiac function in immune-competent CHF rats. The improvements were detectable at seven weeks post-graft implantation despite an antibody response beginning at week one and peaking at week three. This suggests that non-integrating cell-based therapy delivered by a bioengineered tissue graft for ischemic cardiomyopathy is a viable treatment option.

3.
Am J Physiol Heart Circ Physiol ; 320(1): H108-H116, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164577

RESUMEN

Heart failure (HF) post-myocardial infarction (MI) presents with increased vulnerability to monomorphic ventricular tachycardia (mmVT). To appropriately evaluate new therapies for infarct-mediated reentrant arrhythmia in the preclinical setting, chronologic characterization of the preclinical animal model pathophysiology is critical. This study aimed to evaluate the rigor and reproducibility of mmVT incidence in a rodent model of HF. We hypothesize a progressive increase in the incidence of mmVT as the duration of HF increases. Adult male Sprague-Dawley rats underwent permanent left coronary artery ligation or SHAM surgery and were maintained for either 6 or 10 wk. At end point, SHAM and HF rats underwent echocardiographic and invasive hemodynamic evaluation. Finally, rats underwent electrophysiologic (EP) assessment to assess susceptibility to mmVT and define ventricular effective refractory period (ERP). In 6-wk HF rats (n = 20), left ventricular (LV) ejection fraction (EF) decreased (P < 0.05) and LV end-diastolic pressure (EDP) increased (P < 0.05) compared with SHAM (n = 10). Ten-week HF (n = 12) revealed maintenance of LVEF and LVEDP (P > 0.05), (P > 0.05). Electrophysiology studies revealed an increase in incidence of mmVT between SHAM and 6-wk HF (P = 0.0016) and ERP prolongation (P = 0.0186). The incidence of mmVT and ventricular ERP did not differ between 6- and 10-wk HF (P = 1.0000), (P = 0.9831). Findings from this rodent model of HF suggest that once the ischemia-mediated infarct stabilizes, proarrhythmic deterioration ceases. Within the 6- and 10-wk period post-MI, no echocardiographic, invasive hemodynamic, or electrophysiologic changes were observed, suggesting stable HF. This is the necessary context for the evaluation of experimental therapies in rodent HF.NEW & NOTEWORTHY Rodent model of ischemic cardiomyopathy exhibits a plateau of inducible monomorphic ventricular tachycardia incidence between 6 and 10 wk postinfarction.


Asunto(s)
Potenciales de Acción , Insuficiencia Cardíaca/etiología , Frecuencia Cardíaca , Infarto del Miocardio/complicaciones , Taquicardia Ventricular/etiología , Función Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca/fisiopatología , Masculino , Infarto del Miocardio/fisiopatología , Ratas Sprague-Dawley , Periodo Refractario Electrofisiológico , Volumen Sistólico , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Presión Ventricular
4.
J Investig Med ; 69(2): 364-370, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33115956

RESUMEN

Patients diagnosed with heart failure with reduced ejection fraction (HFrEF) are at increased risk of monomorphic ventricular tachycardia (VT) and ventricular fibrillation. The presence of myocardial fibrosis provides both anatomical and functional barriers that promote arrhythmias in these patients. Propagation of VT in a reentrant circuit depends on the presence of excitable myocardium and the refractoriness of the circuit. We hypothesize that myocardial refractoriness can be modulated surgically in a model of HFrEF, leading to decreased susceptibility to VT.Male Sprague-Dawley rats were infarcted via permanent left coronary artery ligation. At 3 weeks post-infarction, engineered grafts composed of human dermal fibroblasts cultured into a polyglactin-910 biomaterial were implanted onto the epicardium to cover the area of infarction. Three weeks post-graft treatment, all rats underwent a terminal electrophysiologic study to compare monophasic action potential electroanatomic maps and susceptibility to inducible monomorphic VT.HFrEF rats (n=29) demonstrated a longer (p=0.0191) ventricular effective refractory period (ERP) and a greater (p=0.0394) VT inducibility compared with sham (n=7). HFrEF rats treated with the graft (n=12) exhibited no change in capture threshold (p=0.3220), but had a longer ventricular ERP (p=0.0029) compared with HFrEF. No statistically significant change in VT incidence was found between HFrEF rats treated with the graft and untreated HFrEF rats (p=0.0834).Surgical deployment of a fibroblast-containing biomaterial in a rodent ischemic cardiomyopathy model prolonged ventricular ERP as measured by programmed electrical stimulation. This hypothesis-generating study warrants additional studies to further characterize the antiarrhythmic or proarrhythmic effects of this novel surgical therapy.


Asunto(s)
Materiales Biocompatibles , Insuficiencia Cardíaca , Infarto del Miocardio , Taquicardia Ventricular , Animales , Fibroblastos , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Volumen Sistólico , Injerto Vascular
5.
Ann Thorac Surg ; 108(4): 1169-1177, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31075250

RESUMEN

BACKGROUND: To treat chronic heart failure (CHF), we developed a robust, easy to handle bioabsorbable tissue-engineered patch embedded with human neonatal fibroblasts and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This patch was implanted on the epicardial surface of the heart covering the previously infarcted tissue. METHODS: Sprague-Dawley rats (6-8 weeks old) underwent sham surgery (n = 12) or left coronary artery ligation (n = 45). CHF rats were randomized 3 weeks after ligation to CHF control with sham thoracotomy (n = 21), or a fibroblasts/hiPSC-CMs patch (n = 24) was implanted. All sham surgery rats also underwent a sham thoracotomy. At 3 weeks after randomization, hemodynamics, echocardiography, electrophysiologic, and cell survival studies were performed. RESULTS: Patch-treated rats had decreased (P < .05) left ventricular-end diastolic pressure and the time constant of left ventricular relaxation (Tau), increased anterior wall thickness in diastole, and improved echocardiography-derived indices of diastolic function (E/e' [ratio of early peak flow velocity to early peak LV velocity] and e'/a' [ratio of early to late peak left ventricular velocity]). All rats remained in normal sinus rhythm, with no dysrhythmias. Rats treated with the patch showed improved electrical activity. Transplanted hiPSC-CMs were present at 7 days but not detected at 21 days after implantation. The patch increased (P < .05) gene expression of vascular endothelial growth factor, angiopoietin 1, gap junction α-1 protein (connexin 43), ß-myosin heavy 7, and insulin growth factor-1 expression in the infarcted heart. CONCLUSIONS: Epicardial implantation of a fibroblasts/hiPSC-CMs patch electrically enhanced conduction, lowered left ventricular end-diastolic pressure, and improved diastolic function in rats with CHF. These changes were associated with increases in cytokine expression.


Asunto(s)
Insuficiencia Cardíaca/terapia , Células Madre Pluripotentes Inducidas/trasplante , Miocitos Cardíacos/trasplante , Mallas Quirúrgicas , Ingeniería de Tejidos , Andamios del Tejido , Animales , Modelos Animales de Enfermedad , Fibroblastos/trasplante , Humanos , Ratas , Ratas Sprague-Dawley , Función Ventricular Izquierda
6.
Vessel Plus ; 32019.
Artículo en Inglés | MEDLINE | ID: mdl-32789290

RESUMEN

This review will outline cell-based therapy for heart failure focusing on tissue engineering to deliver cells to the damaged heart. We will present an overview of the central approaches focusing on pluripotent stem cell-derived cells, mechanisms of action, autologous vs. allogeneic cell approaches, immunologic modulation, and safety considerations. We will outline the progress that has been made to-date and define the areas that still need to be investigated in order to advance the field.

8.
J Card Fail ; 23(10): 753-761, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28801075

RESUMEN

OBJECTIVE: For chronic heart failure (CHF), more emphasis has been placed on evaluation of systolic as opposed to diastolic function. Within the study of diastology, measurements of left ventricular (LV) longitudinal myocardial relaxation have the most validation. Anterior wall radial myocardial tissue relaxation velocities along with mitral valve inflow (MVI) patterns are applicable diastolic parameters in the differentiation between moderate and severe disease in the ischemic rat model of CHF. Myocardial tissue relaxation velocities correlate with traditional measurements of diastolic function (ie, hemodynamics, Tau, and diastolic pressure-volume relationships). METHODS AND RESULTS: Male Sprague-Dawley rats underwent left coronary artery ligation or sham operation. Echocardiography was performed at 3 and 6 weeks after coronary ligation to evaluate LV ejection fraction (EF) and LV diastolic function through MVI patterns (E, A, and E/A) and Doppler imaging of the anterior wall (e' and a'). The rats were categorized into moderate or severe CHF according to their LV EF at 3 weeks postligation. Invasive hemodynamic measurements with solid-state pressure catheters were obtained at the 6-week endpoint. Moderate (N = 20) and severe CHF (N = 22) rats had significantly (P < .05) different EFs, hemodynamics, and diastolic pressure-volume relationships. Early diastolic anterior wall radial relaxation velocities as well as E/e' ratios separated moderate from severe CHF and both diastolic parameters had strong correlations with invasive hemodynamic measurements of diastolic function. CONCLUSION: Radial anterior wall e' and E/e' can be used for serial assessment of diastolic function in rats with moderate and severe CHF.


Asunto(s)
Presión Sanguínea/fisiología , Ecocardiografía/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Recuperación de la Función/fisiología , Índice de Severidad de la Enfermedad , Animales , Enfermedad Crónica , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley
9.
Stem Cells Int ; 2017: 9640108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29391871

RESUMEN

Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF) manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs) have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

10.
J Heart Lung Transplant ; 33(4): 438-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24560982

RESUMEN

BACKGROUND: Varying strategies are currently being evaluated to develop tissue-engineered constructs for the treatment of ischemic heart disease. This study examines an angiogenic and biodegradable cardiac construct seeded with neonatal cardiomyocytes for the treatment of chronic heart failure (CHF). METHODS: We evaluated a neonatal cardiomyocyte (NCM)-seeded 3-dimensional fibroblast construct (3DFC) in vitro for the presence of functional gap junctions and the potential of the NCM-3DFC to restore left ventricular (LV) function in an in vivo rat model of CHF at 3 weeks after permanent left coronary artery ligation. RESULTS: The NCM-3DFC demonstrated extensive cell-to-cell connectivity after dye injection. At 5 days in culture, the patch contracted spontaneously in a rhythmic and directional fashion at 43 ± 3 beats/min, with a mean displacement of 1.3 ± 0.3 mm and contraction velocity of 0.8 ± 0.2 mm/sec. The seeded patch could be electrically paced at nearly physiologic rates (270 ± 30 beats/min) while maintaining coordinated, directional contractions. Three weeks after implantation, the NCM-3DFC improved LV function by increasing (p < 0.05) ejection fraction 26%, cardiac index 33%, dP/dt(+) 25%, dP/dt(-) 23%, and peak developed pressure 30%, while decreasing (p < 0.05) LV end diastolic pressure 38% and the time constant of relaxation (Tau) 16%. At 18 weeks after implantation, the NCM-3DFC improved LV function by increasing (p < 0.05) ejection fraction 54%, mean arterial pressure 20%, dP/dt(+) 16%, dP/dt(-) 34%, and peak developed pressure 39%. CONCLUSIONS: This study demonstrates that a multicellular, electromechanically organized cardiomyocyte scaffold, constructed in vitro by seeding NCM onto 3DFC, can improve LV function long-term when implanted in rats with CHF.


Asunto(s)
Estimulación Cardíaca Artificial , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia , Miocitos Cardíacos/trasplante , Neovascularización Fisiológica/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Función Ventricular Izquierda/fisiología , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Ecocardiografía , Insuficiencia Cardíaca/patología , Hemodinámica/fisiología , Isquemia Miocárdica/patología , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Volumen Sistólico/fisiología
11.
J Card Fail ; 19(7): 503-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23834926

RESUMEN

BACKGROUND: Treatment of beta2-adrenergic receptor agonists with myeloid cytokines, such as granulocyte colony-stimulating factor (G-CSF) has been reported to enhance stem/progenitor cell mobilization and proliferation in ischemic myocardium. However, whether the combination therapy of G-CSF and clenbuterol (Clen) contributes to improved left ventricular (LV) function remains uncertain. We investigated whether this combination therapy induced bone marrow-derived stem/progenitor cell mobilization, neovascularization, and altered LV function after acute myocardial infarction (MI). METHODS AND RESULTS: Following MI, rats were treated with single Clen, high-dose Clen, and G-CSF + Clen. We evaluated LV function and remodeling with the use of echocardiography in addition to hemodynamics 3 weeks after MI. Treatment with G-CSF + Clen increased (P < .05), compared with no treatment, LV ejection fraction 46 ± 3% vs 34 ± 2%, LV dP/dt 5,789 ± 394 mm Hg vs 4,503 ± 283 mm Hg, and the percentage of circulating CD34+ cells, appearing to correlate with improvements in LV function. CONCLUSIONS: Combination therapy improved LV function 3 weeks after MI, suggesting that G-CSF + Clen might augment stem/progenitor cell migration, contributing to tissue healing. These data raise the possibility that enhancing endogenous bone marrow-derived stem/progenitor cell mobilization may be a new treatment for ischemic heart failure after MI.


Asunto(s)
Clenbuterol/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Insuficiencia Cardíaca/tratamiento farmacológico , Movilización de Célula Madre Hematopoyética/métodos , Neovascularización Fisiológica/efectos de los fármacos , Animales , Quimioterapia Combinada , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/cirugía , Neovascularización Fisiológica/fisiología , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre/métodos , Resultado del Tratamiento
12.
J Cardiovasc Pharmacol ; 60(3): 293-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22653419

RESUMEN

BACKGROUND: Poloxamer-188 (P-188) is a biological membrane sealant that prevents the unregulated entry of Ca into cardiomyocytes and has been shown to have the ability to act as a membrane-repair agent in isolated cardiac myocytes. The purpose of this study was to determine if treatment with P-188 would improve left ventricular (LV) function in a rat chronic heart failure (CHF) model. METHODS: We ligated the left coronary artery of adult male Sprague-Dawley rats to induce a myocardial infarction (MI). The rats were allowed to recover for 8 weeks until stable CHF was present and treated with a range of P-188 doses [1.5 mg/kg (N = 6), 4.6 mg/kg (N = 11), 15.3 mg/kg (N = 11), and 460 mg/kg (N = 6)] delivered via 30 minutes of intravenous infusion. The rats were randomized to study groups: control, 2 hours, 24 hours, 48 hours, 1 week, and 2 weeks posttreatment (N = 8 in each group). RESULTS: Two weeks after high dose (460 mg/kg) administration, P-188 improved (P < 0.05) left ventricular ejection fraction from 34% to 51%, which persisted over 38 hours and decreased (P < 0.05) LV end systolic diameter from 0.9 ± 0.07 to 0.6 ± 0.08 cm, in the rats with CHF. There was no statistical change in hemodynamics. Additionally, P-188 reduced (P < 0.05) circulating troponin levels 2 weeks after treatment. CONCLUSIONS: Treatment with P-188 improves the LV function and partially reverses maladaptive LV remodeling in rats with moderate CHF after MI. These data introduce the idea of using a biological membrane sealant as a new approach to treating CHF after MI.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Poloxámero/uso terapéutico , Función Ventricular Izquierda/efectos de los fármacos , Animales , Insuficiencia Cardíaca/fisiopatología , Masculino , Infarto del Miocardio/fisiopatología , Poloxámero/farmacología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Función Ventricular Izquierda/fisiología
13.
J Cardiovasc Pharmacol ; 57(5): 568-74, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21326109

RESUMEN

Granulocyte macrophage colony-stimulating factor (GM-CSF) promotes infarct expansion and inappropriate collagen synthesis in a myocardial infarction (MI). This study was designed to determine if treatment with anti-GM-CSF will inhibit macrophage migration, preserve function, and limit left ventricular (LV) remodeling in the rat coronary artery ligation model. Treatment with a monoclonal antibody to GM-CSF (5 mg/kg) was initiated 24 hours before coronary artery ligation and continued every 3 days for 3 weeks. Left coronary arteries of rats were ligated, animals were recovered, and cardiac function was evaluated 3 weeks postligation. Tissue samples were processed for histochemistry. Anti-GM-CSF treatment increased LV ejection fraction (37 ± 3% vs 47 ± 5%) and decreased LV end systolic diameter (0.75 ± 0.12 vs 0.59 ± 0.05 cm) with no changes in LV systolic pressure (109 ± 4 vs 104 ± 5 mm Hg), LV end diastolic pressure (22 ± 4 vs 21 ± 2 mm Hg), LV end diastolic diameter (0.96 ± 0.04 vs 0.92 ± 0.05 cm), or the time constant of LV relaxation tau (25.4 ± +2.4 vs 22.7 ± 1.4 milliseconds) (P < 0.05). Significantly lower numbers of tissue macrophages and significant reductions in infarct size were found in the myocardium of antibody-treated animals (81 ± 21.24 vs 195 ± 31.7 positive cells per 0.105 mm, compared with controls. These findings suggest that inhibition of macrophage migration may be beneficial in the treatment of heart failure after MI.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Animales , Anticuerpos Monoclonales de Origen Murino/administración & dosificación , Anticuerpos Monoclonales de Origen Murino/farmacología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Vasos Coronarios/inmunología , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Hemodinámica/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Masculino , Infarto del Miocardio/inmunología , Infarto del Miocardio/fisiopatología , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...