Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716951

RESUMEN

Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Mucosa Intestinal/metabolismo , Proteína Quinasa C/metabolismo , Células Receptoras Sensoriales/metabolismo , Taxia/fisiología , Animales , Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/genética , Frío , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Quinasa C/genética , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 291(45): 23516-23531, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27662904

RESUMEN

Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling pathways regulated by diacylglycerol. Important physiological processes (including secretion, immune responses, motility, and transcription) are placed under diacylglycerol control by the distinctive substrate specificity and subcellular distribution of PKDs. Potentially, broadly co-expressed PKD polypeptides may interact to generate homo- or heteromultimeric regulatory complexes. However, the frequency, molecular basis, regulatory significance, and physiological relevance of stable PKD-PKD interactions are largely unknown. Here, we demonstrate that mammalian PKDs 1-3 and the prototypical Caenorhabditis elegans PKD, DKF-2A, are exclusively (homo- or hetero-) dimers in cell extracts and intact cells. We discovered and characterized a novel, highly conserved N-terminal domain, comprising 92 amino acids, which mediates dimerization of PKD1, PKD2, and PKD3 monomers. A similar domain directs DKF-2A homodimerization. Dimerization occurred independently of properties of the regulatory and kinase domains of PKDs. Disruption of PKD dimerization abrogates secretion of PAUF, a protein carried in small trans-Golgi network-derived vesicles. In addition, disruption of DKF-2A homodimerization in C. elegans intestine impaired and degraded the immune defense of the intact animal against an ingested bacterial pathogen. Finally, dimerization was indispensable for the strong, dominant negative effect of catalytically inactive PKDs. Overall, the structural integrity and function of the novel dimerization domain are essential for PKD-mediated regulation of a key aspect of cell physiology, secretion, and innate immunity in vivo.


Asunto(s)
Proteína Quinasa C/química , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/inmunología , Secuencia Conservada , Células HEK293 , Humanos , Inmunidad Innata , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología , Proteína Quinasa C/inmunología , Alineación de Secuencia
3.
Immunity ; 30(4): 521-32, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19371715

RESUMEN

Protein kinase D (PKD) mediates signal transduction downstream from phospholipase C and diacylglycerol (DAG). PKDs are activated by hormones and stress in cell lines, but little is known about PKD functions and regulation in vivo. Here, we show that DKF-2, a C. elegans PKD, regulates innate immunity. Animals lacking DKF-2 were hypersensitive to killing by bacteria that are pathogens of C. elegans and humans. DKF-2 induced 85 mRNAs, which encode antimicrobial peptides and proteins that sustain intestinal epithelium. Induction of immune effector mRNAs by DKF-2 proceeded via PMK-1 (p38 Map-kinase)-dependent and -independent pathways. TPA-1, a PKCdelta homolog, regulated activation and functions of DKF-2 in vivo. Therefore, DKF-2 provides a molecular link that couples DAG signaling to regulation of immunity. This intersection between DAG-TPA-1-DKF-2 and PMK-1 pathways enables integrated immune responses to multiple stimuli. Thus, a PKD mobilizes activation of host immune defenses against pathogens by previously unappreciated signaling pathways and mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/inmunología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Proteína Quinasa C/inmunología , Animales , Fenómenos Fisiológicos Bacterianos , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Humanos , Intestinos/inmunología , Análisis por Micromatrices , Proteína Quinasa C/genética , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...