Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 43(2): 231, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29328246

RESUMEN

This publisher's note corrects errors in the affiliations in Opt. Lett.42, 3789 (2017).OPLEDP0146-959210.1364/OL.42.003789.

2.
ACS Appl Mater Interfaces ; 10(1): 1356-1362, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29220168

RESUMEN

Owing to a complex monocline structure and high-density of defects in monocrystalline GaTe, the performance of GaTe-based electronic devices is considerably compromised. Yet, the defects' nature in GaTe could be a merit rather than a shortcoming in other realms. In our work, the density of defects in GaTe films is utilized for a facile decoration of Au nanoparticles (NPs), which allowed us to extend its application potential to the domain of surface enhanced Raman scattering (SERS) for the first time. Two-dimensional (2D) GaTe layered structures are prepared by mechanical exfoliation, and high-density Au NPs are synthesized by immersion of 2D GaTe in HAuCl4 aqueous solution. By varying the immersion time, the sizes and coverage rate of Au NPs on GaTe can be elaborately tuned. Thanks to the defect nature of GaTe, the maximum coverage amounts to 98%. The hereby achieved Au-NPs-2D-GaTe hybrid structure demonstrates outstanding properties as a superior SERS substrate for ultrasensitive detection of R6G aromatic molecules. Remarkably, the enhancement factor reaches up to 1.6 × 104, and the minimum detectable concentration is 10-11 M, undercutting that of recently reported Au-NPs-MoS2 SERS and Au-NPs-graphene SERS substrates which have a similar structure. With superior detection capability and facile preparation, Au-NPs-GaTe SERS substrates can become a perfect choice for the detection of aromatic molecules.

3.
Opt Lett ; 42(19): 3789-3792, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957128

RESUMEN

A core-shell structure of novel complex conjugated polymer nanoparticles (CPNs) consisting of poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylenevinylene), polyethyleneimine (PEI) is developed. PEI is used to construct CPN@PEI core-shell structure through electrostatic attraction, and shell thickness can be controlled by PEI. Small Au-Ag alloy nanoparticles (ANPs) are then inserted into CPN@PEI core-shell structure to plasmonically tune luminescence properties. The coupling structure with double polymer core-shell CPN@PEI and ANPs presents unique luminescent characters, and maximum luminescence enhancement is realized when shell thickness is 8.6 nm. The strategies taking polymer as shell material in construction of core-shell complex CPNs and tuning optical properties by ANPs shall have significant values in applications of CPNs as probes and fluorescent tags in biological science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...