Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1859(10): 2144-2153, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28757124

RESUMEN

Ion channel-coupled receptors (ICCRs) are original man-made ligand-gated ion channels created by fusion of G protein-coupled receptors (GPCRs) to the inward-rectifier potassium channel Kir6.2. GPCR conformational changes induced by ligand binding are transduced into electrical current by the ion channel. This functional coupling is closely related to the length of the linker region formed by the GPCR C-terminus (C-ter) and Kir6.2N-terminus (N-ter). Manipulating the GPCR C-ter length allows to finely tune the channel regulation, both in amplitude and sign (opening or closing Kir6.2). In this work, we demonstrate that the primary sequence of the channel N-terminal domain is an additional parameter for the functional coupling with GPCRs. As for all Kir channels, a cluster of basic residues is present in the N-terminal domain of Kir6.2 and is composed of 5 arginines which are proximal to the GPCR C-ter in the fusion proteins. Using a functional mapping approach, we demonstrate the role of specific arginines (R27 and R32) for the function of ICCRs, indicating that the position and not the cluster of positively-charged arginines is critical for the channel regulation by the GPCR. Following observations provided by molecular dynamics simulation, we explore the hypothesis of interaction of these arginines with acidic residues, and using site-directed mutagenesis, we identified aspartate D307 and glutamate E308 residues as critical for the function of ICCRs. These results demonstrate the critical role of the N-terminal and C-terminal charged residues of Kir6.2 for its allosteric regulation by the fused GPCR.


Asunto(s)
Arginina/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Activación del Canal Iónico/fisiología , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida/métodos , Oocitos/metabolismo , Xenopus/metabolismo
2.
mBio ; 4(4)2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23919999

RESUMEN

UNLABELLED: Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4. IMPORTANCE: We present an example of structural biology informing human vaccine design. We previously showed that the administration of the enzyme arginine deiminase (ADI) to mice protected the mice against infection with multiple GAS serotypes. In this study, we determined the structure of GAS ADI and used this information to improve the vaccine safety of GAS ADI. Catalytically inactive mutant forms of ADI retained structure, recognition by antisera, and immunogenic epitopes, rendering them ideal for inclusion in GAS vaccine preparations. This example of structural biology informing vaccine design may underpin the formulation of a safe and efficacious GAS vaccine.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Vacunas Estreptocócicas/química , Vacunas Estreptocócicas/metabolismo , Streptococcus pyogenes/enzimología , Sustitución de Aminoácidos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Cristalografía por Rayos X , Mapeo Epitopo , Humanos , Hidrolasas/genética , Hidrolasas/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/inmunología
3.
Structure ; 21(8): 1338-49, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23850454

RESUMEN

Chromosome region maintenance 1/exportin1/Xpo1 (CRM1) associates with the GTPase Ran to mediate the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES). CRM1 consists of helical hairpin HEAT repeats and a C-terminal helical extension (C-extension) that inhibits the binding of NES-bearing cargos. We report the crystal structure and small-angle X-ray scattering analysis of a human CRM1 mutant with enhanced NES-binding activity due to deletion of the C-extension. We show that loss of the C-extension leads to a repositioning of CRM1's C-terminal repeats and to a more extended overall conformation. Normal mode analysis predicts reduced rigidity for the deletion mutant, consistent with an observed decrease in thermal stability. Point mutations that destabilize the C-extension shift CRM1 to the more extended conformation, reduce thermal stability, and enhance NES-binding activity. These findings suggest that an important mechanism by which the C-extension regulates CRM1's cargo-binding affinity is by modulating the conformation and flexibility of its HEAT repeats.


Asunto(s)
Carioferinas/química , Receptores Citoplasmáticos y Nucleares/química , Cristalografía por Rayos X , Humanos , Carioferinas/genética , Modelos Moleculares , Mutagénesis , Mutación Puntual , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Secuencias Repetitivas de Aminoácido , Dispersión del Ángulo Pequeño , Eliminación de Secuencia , Proteína Exportina 1
4.
PLoS One ; 6(2): e17011, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21364925

RESUMEN

Proteins bearing a leucine-rich nuclear export signal (NES) are exported from the nucleus by the transport factor CRM1, which forms a cooperative ternary complex with the NES-bearing cargo and with the small GTPase Ran. CRM1-mediated export is regulated by RanBP3, a Ran-interacting nuclear protein. Unlike the related proteins RanBP1 and RanBP2, which promote disassembly of the export complex in the cytosol, RanBP3 acts as a CRM1 cofactor, enhancing NES export by stabilizing the export complex in the nucleus. RanBP3 also alters the cargo selectivity of CRM1, promoting recognition of the NES of HIV-1 Rev and of other cargos while deterring recognition of the import adaptor protein Snurportin1. Here we report the crystal structure of the Ran-binding domain (RBD) from RanBP3 and compare it to RBD structures from RanBP1 and RanBP2 in complex with Ran and CRM1. Differences among these structures suggest why RanBP3 binds Ran with unusually low affinity, how RanBP3 modulates the cargo selectivity of CRM1, and why RanBP3 promotes assembly rather than disassembly of the export complex. The comparison of RBD structures thus provides an insight into the functional diversity of Ran-binding proteins.


Asunto(s)
Carioferinas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Secuencia de Aminoácidos , Humanos , Carioferinas/química , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...