RESUMEN
Peirosauridae (Crocodyliformes, Notosuchia) is one of the fossil lineages of crocodyliforms ubiquitous in the Cretaceous deposits of the Bauru Basin. Here, we describe a new species of a longirostrine Peirosauridae from the Adamantina Formation (Bauru Basin, Late Cretaceous). The specimen consists of a partially preserved skull with a cranial roof, interorbital region, and fragments of the posterior portion of the rostrum, including the prefrontal and lacrimal; left hemimandible, with 14 alveoli and 12 teeth; and a single cervical rib fragment. The specimen is associated with Peirosauridae by three cranial synapomorphies, and it can be assigned to a new genus and species by presenting seven cranial and one tooth apomorphies. To clarify the position of the new taxon, an updated phylogenetic analysis was performed with increased sampling of taxa of Notosuchia, especially Peirosauridae, and phylogenetically relevant characters. Our results indicated the monophyly of Peirosauridae, formed by two main lineages, the oreinirostral and presumably terrestrial Peirosaurinae and the longirostrine and presumably semi-aquatic Pepesuchinae. The recovering of both lineages as distinct entities was also reinforced through a morphospace analysis. Pepesuchinae were notable by exploring a position of the morphospace not explored by any other Notosuchia. Their longer rostra and the assumption of them being gradually specialized to aquatic habits reflects the unique diversity of these crocodyliforms through the Cretaceous deposits of South America and Africa.
RESUMEN
The description of new titanosaur specimens unearthed from deposits of the Serra da Galga Formation (Bauru Group, Late Cretaceous) at the BR-262 site, near Peirópolis (Uberaba, Minas Gerais State, Brazil), sheds light on the taxonomy of two taxa previously known from the same area and geological unit: Baurutitan britoi and Trigonosaurus pricei. A comparative revision indicates that T. pricei represents a junior synonym of Ba. britoi, and that the BR-262 specimens belong to that latter species. The information provided by the new specimens also revealed that the paratype of T. pricei (MCT 1719-R), a caudal vertebral series, actually represents a new taxon, named here as Caieiria allocaudata gen. et sp. nov.
Asunto(s)
Dinosaurios , Animales , Brasil , Filogenia , Columna Vertebral , GeologíaRESUMEN
Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.
Asunto(s)
Dinosaurios , Fósiles , Animales , Argentina , Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histologíaRESUMEN
Baurusuchidae is one of the most diverse groups of South American notosuchians, unambiguously recorded in Late Cretaceous deposits of Brazil and Argentina. The group is characterized by a reduced tooth formula, a lateromedially compressed rostrum, and a verticalized quadrate, representing one of the top predators of their faunas. Historically, skull morphology is the most employed tool to investigate the relationships of baurusuchids, as most of the species have been primarily based on cranial remains. The present study describes a new baurusuchid species from the Bauru Basin of Brazil, based on the first tridimensional digital reconstruction of individualized skull bones for Notosuchia, and discusses its phylogenetic position within the group. The new species differs from all the other known baurusuchids by a depression on the posterior portion of the nasal bearing a crest, an infraorbital crest of the jugal that extends until the anterior margin of the lacrimal, the dorsal surface of the frontal lacking a longitudinal crest or depression, and the lateral convexity of the squamosal prongs participating in the occipital wall. The new taxon is consistently positioned as sister to the remaining baurusuchines, with Aplestosuchus sordidus and Stratiotosuchus maxhechti, as successive sister-taxa to a monophyletic Baurusuchus (Ba. albertoi, Ba. Salgadoensis, and Ba. pachecoi). Our updated phylogenetic analysis helps to differentiate the two major Baurusuchidae lineages, Baurusuchinae and Pissarrachampsinae. Yet, the new species shares morphological features with both groups, suggesting the occurrence of "Zones of Variability" in the radiation of Baurusuchidae.
Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Evolución Biológica , Fósiles , Modelos Anatómicos , Cráneo/anatomía & histología , Animales , Brasil , Filogenia , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos XRESUMEN
Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.
Asunto(s)
Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Filogenia , Animales , Calibración , Cráneo/anatomía & histología , Factores de Tiempo , Alas de Animales/anatomía & histología , Microtomografía por Rayos XRESUMEN
Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.
RESUMEN
Uberabatitan ribeiroi is a Late Cretaceous titanosaur (Dinosauria, Sauropoda) from southeastern Brazil. Here we provide a detailed revision of all its available specimens, including new elements from the type-locality. One new autopomorphy is added to diagnosis of the taxon: astragalus with a well-developed anteroposterior crest that mediodistally delimits the tibial articulation. Linear regressions were conducted in an attempt to circumscribe specimens within the type-series, revealing that it is composed of several individuals, with inferred total body lengths varying from 7 to 26 meters. Phylogenetic analyses including U. ribeiroi show that the Brazilian taxon corresponds to a non-saltasaurid lithostrotian titanosaur.
Asunto(s)
Dinosaurios , Osteología , Animales , Brasil , Fósiles , FilogeniaRESUMEN
Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian-c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary.
Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Conducta Alimentaria , Cráneo/anatomía & histología , Animales , Arqueología , BrasilRESUMEN
In the last three decades, records of tribosphenidan mammals from India, continental Africa, Madagascar and South America have challenged the notion of a strictly Laurasian distribution of the group during the Cretaceous. Here, we describe a lower premolar from the Late Cretaceous Adamantina Formation, São Paulo State, Brazil. It differs from all known fossil mammals, except for a putative eutherian from the same geologic unity and Deccanolestes hislopi, from the Maastrichtian of India. The incompleteness of the material precludes narrowing down its taxonomic attribution further than Tribosphenida, but it is larger than most coeval mammals and shows a thin layer of parallel crystallite enamel. The new taxon helps filling two major gaps in the fossil record: the paucity of Mesozoic mammals in more northern parts of South America and of tribosphenidans in the Cretaceous of that continent. In addition, high-precision U-Pb geochronology provided a post-Turonian maximal age (≤87.8â Ma) for the type stratum, which is overlain by the dinosaur-bearing Marília Formation, constraining the age of the Adamantina Formation at the site to late Coniacian-late Maastrichtian. This represents the first radioisotopic age for the Bauru Group, a key stratigraphic unit for the study of Cretaceous tetrapods in Gondwana.
RESUMEN
Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa-Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous-Palaeogene or the Eocene-Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.
RESUMEN
The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called "Tunduru beds". Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian.
RESUMEN
The evolutionary history of dinosaurs might date back to the first stages of the Triassic (c. 250-240 Ma), but the oldest unequivocal records of the group come from Late Triassic (Carnian - c. 230 Ma) rocks of South America. Here, we present the first braincase endocast of a Carnian dinosaur, the sauropodomorph Saturnalia tupiniquim, and provide new data regarding the evolution of the floccular and parafloccular lobe of the cerebellum (FFL), which has been extensively discussed in the field of palaeoneurology. Previous studies proposed that the development of a permanent quadrupedal stance was one of the factors leading to the volume reduction of the FFL of sauropods. However, based on the new data for S. tupiniquim we identified a first moment of FFL volume reduction in non-sauropodan Sauropodomorpha, preceding the acquisition of a fully quadrupedal stance. Analysing variations in FFL volume alongside other morphological changes in the group, we suggest that this reduction is potentially related to the adoption of a more restricted herbivore diet. In this context, the FFL of sauropods might represent a vestigial trait, retained in a reduced version from the bipedal and predatory early sauropodomorphs.
Asunto(s)
Evolución Biológica , Cerebelo/anatomía & histología , Cerebelo/crecimiento & desarrollo , Dinosaurios/anatomía & histología , Fósiles , Animales , Filogenia , América del Sur , Tomografía Computarizada por Rayos XRESUMEN
The postcranial anatomy of Crocodyliformes has historically been neglected, as most descriptions are based solely on skulls. Yet, the significance of the postcranium in crocodyliforms evolution is reflected in the great lifestyle diversity exhibited by the group, with members ranging from terrestrial animals to semi-aquatic and fully marine forms. Recently, studies have emphasized the importance of the postcranium. Following this trend, here we present a detailed description of the postcranial elements of Pissarrachampsa sera (Mesoeucrocodylia, Baurusuchidae), from the Adamantina Formation (Bauru Group, Late Cretaceous of Brazil). The preserved elements include dorsal vertebrae, partial forelimb, pelvic girdle, and hindlimbs. Comparisons with the postcranial anatomy of baurusuchids and other crocodyliforms, together with body-size and mass estimates, lead to a better understanding of the paleobiology of Pissarrachampsa sera, including its terrestrial lifestyle and its role as a top predator. Furthermore, the complete absence of osteoderms in P. sera, a condition previously known only in marine crocodyliforms, suggests osteoderms very likely played a minor role in locomotion of baurusuchids, unlike other groups of terrestrial crocodyliforms. Finally, a phylogenetic analysis including the newly recognized postcranial features was carried out, and exploratory analyses were performed to investigate the influence of both cranial and postcranial characters in the phylogeny of Crocodyliformes. Our results suggest that crocodyliform relationships are mainly determined by cranial characters. However, this seems to be a consequence of the great number of missing entries in the data set with only postcranial characters and not of the lack of potential (or synapomorphies) for this kind of data to reflect the evolutionary history of Crocodyliformes.
RESUMEN
Sauropod dinosaurs compose a diversified, well known, and worldwide distributed clade, with a stereotyped body plan: deep trunk, elongated neck and tail, columnar limbs and very small skull. In Brazil, the group is represented by ten formally described Cretaceous species, mostly titanosaurs. This is the case of Maxakalisaurus topai, known based on an incomplete and disarticulated skeleton, unearthed from deposits of the Adamantina Formation in Minas Gerais. Here, we report a partial right dentary, including five isolated teeth, collected from the same site as the type-series of M. topai and tentatively referred to that taxon. The bone is gently curved medially, the functional teeth are set on an anterolingual position, and two replacement teeth are seen per alveoli. New morphological data gathered from that specimen was employed to conduct a comprehensive phylogenetic analysis of Titanosauria (with 42 taxa and 253 characters), based on previous studies. The Aeolosaurini clade was recovered, with Gondwanatitan and Aelosaurus as sister taxa, and Maxakalisaurus, Panamericansaurus, and Rinconsaurus forming a basal polytomy.
RESUMEN
The matamata (Chelus fimbriatus) is a highly aquatic chelid turtle known exclusively from northern South America. Due to its extremely modified morphology, it is well circumscribed among living taxa, but that is not the case of the two extinct species ascribed to the taxon, Chelus colombianus and Chelus lewisi. These were originally described for the Miocene of Colombia and Venezuela, respectively, and are known mostly from post-cranial material. Few traits have been considered diagnostic for these fossil taxa, and their shared geographic and temporal distributions raise doubts about their distinctiveness. Here, we describe new turtle remains from the early Miocene Castillo Formation, at Cerro la Cruz, northwestern Venezuela, assigning them to C. colombianus. We also review the taxonomy and diagnostic features of the fossil species of Chelus, comparing them with the variation recognized within C. fimbriatus. All alleged differences between the fossil Chelus species were found in our sample of the extant species, and may represent intraspecific variation of a single fossil species. Further, we reviewed the fossil record of Chelus spp. and proposed a paleobiogeographic hypothesis to explain its present geographic range.
Asunto(s)
Fósiles , Tortugas/anatomía & histología , Tortugas/clasificación , Distribución Animal , Animales , Filogenia , Especificidad de la Especie , VenezuelaRESUMEN
The extinct Stereogenyina turtles form a relatively diverse Podocnemididae lineage, with twelve described and phylogenetically positioned species. They are characterized by a wide geographic and temporal range, from the Eocene of Africa to the Pleistocene of Southeast Asia, and a peculiar palate morphology, with a secondary palate that is unique among side-necked turtles. Here, we describe a new Stereogenyina species, based on an almost complete skull from the middle Miocene Capadare Formation, of Venezuela. A new phylogenetic analysis supports the assignment of the new species to the genus Bairdemys. Based on geometric morphometrics analyses, we related the development of the stereogenyin secondary palate with the acquisition of a durophagous diet. Based on a review of the sedimentary environments where their fossils are found, we also propose that stereogenyins were a marine radiation of podocnemidid turtles, as corroborated by previous studies of fossil eggs and limb morphology. These two inferences allowed us to hypothesize that stereogenyins occupied an ecological niche similar to that of the extant Carettini sea turtles, and that the rise of the latter group may be related to the Stereogenyina diversity fall in the end of the Miocene.
RESUMEN
The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals.
RESUMEN
Pan-Podocnemididae turtles are ubiquitous in Late Cretaceous rocks of the Bauru Group in southeastern Brazil. This group of side-necked turtles is particularly abundant in a turtle-bearing site of the Presidente Prudente Formation known as Tartaruguito. Here, we describe the first turtle egg (LPRP-USP 0052) from the Tartaruguito site. LPRP-USP 0052 is nearly complete but misses a pole and measures 5,1 and 2,9-2,2 centimeters due to its flattened minor axis. The egg morphology and microstructure were analyzed by observations performed with CT, Optic Microscopy, Scanning Electronic Microscopy and Wave Dispersion Energy analyses. The eggshell ranges from 145 to160 micrometers thick. Considering the matching morphology of the new specimen and its provenance from the stratigraphic horizon that yielded only the podocnemidids Bauruemys and Roxochelys, it is most likely that LPRP-USP 0052 was produced by a podocnemidid turtle.
Asunto(s)
Fósiles/anatomía & histología , Óvulo/ultraestructura , Tortugas/anatomía & histología , Animales , Brasil , Historia AntiguaRESUMEN
A new Baurusuchidae (Crocodyliformes, Mesoeucrocodylia), Aplestosuchus sordidus, is described based on a nearly complete skeleton collected in deposits of the Adamantina Formation (Bauru Group, Late Cretaceous) of Brazil. The nesting of the new taxon within Baurusuchidae can be ensured based on several exclusive skull features of this clade, such as the quadrate depression, medial approximation of the prefrontals, rostral extension of palatines (not reaching the level of the rostral margin of suborbital fenestrae), cylindrical dorsal portion of palatine bar, ridge on the ectopterygoid-jugal articulation, and supraoccipital with restricted thin transversal exposure in the caudalmost part of the skull roof. A newly proposed phylogeny of Baurusuchidae encompasses A. sordidus and recently described forms, suggesting its sixter-taxon relationship to Baurusuchus albertoi, within Baurusuchinae. Additionally, the remains of a sphagesaurid crocodyliform were preserved in the abdominal cavity of the new baurusuchid. Direct fossil evidence of behavioral interaction among fossil crocodyliforms is rare and mostly restricted to bite marks resulting from predation, as well as possible conspecific male-to-male aggression. This is the first time that a direct and unmistaken evidence of predation between different taxa of this group is recorded as fossils. This discovery confirms that baurusuchids were top predators of their time, with sphagesaurids occupying a lower trophic position, possibly with a more generalist diet.